12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- <!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=2"><meta name="theme-color" content="#222"><meta name="generator" content="Hexo 4.2.0"><link rel="apple-touch-icon" sizes="180x180" href="/blog/blog/images/apple-touch-icon-next.png"><link rel="icon" type="image/png" sizes="32x32" href="/blog/blog/images/favicon-frog.png"><link rel="icon" type="image/png" sizes="16x16" href="/blog/blog/images/favicon-frog.png"><link rel="mask-icon" href="/blog/blog/images/logo.svg" color="#222"><link rel="stylesheet" href="/blog/css/main.css"><link rel="stylesheet" href="//fonts.googleapis.com/css?family=Comic Sans MS:300,300italic,400,400italic,700,700italic|Consolas:300,300italic,400,400italic,700,700italic&display=swap&subset=latin,latin-ext"><link rel="stylesheet" href="/blog/lib/font-awesome/css/font-awesome.min.css"><link rel="stylesheet" href="/blog/lib/pace/pace-theme-minimal.min.css"><script src="/blog/lib/pace/pace.min.js"></script><script id="hexo-configurations">var NexT=window.NexT||{},CONFIG={hostname:"schtonn.github.io",root:"/blog/",scheme:"Muse",version:"7.8.0",exturl:!1,sidebar:{position:"left",display:"post",padding:18,offset:12,onmobile:!1},copycode:{enable:!0,show_result:!0,style:"flat"},back2top:{enable:!0,sidebar:!1,scrollpercent:!0},bookmark:{enable:!1,color:"#222",save:"auto"},fancybox:!1,mediumzoom:!1,lazyload:!0,pangu:!1,comments:{style:"tabs",active:"valine",storage:!0,lazyload:!1,nav:null,activeClass:"valine"},algolia:{hits:{per_page:10},labels:{input_placeholder:"Search for Posts",hits_empty:"We didn't find any results for the search: ${query}",hits_stats:"${hits} results found in ${time} ms"}},localsearch:{enable:!1,trigger:"auto",top_n_per_article:1,unescape:!1,preload:!1},motion:{enable:!0,async:!1,transition:{post_block:"fadeIn",post_header:"slideDownIn",post_body:"slideDownIn",coll_header:"slideLeftIn",sidebar:"slideUpIn"}}}</script><meta name="description" content="前置知识
矩阵快速幂,扩展欧几里得求逆元,基本的找规律能力。
题面
(luogu P2020)"><meta property="og:type" content="article"><meta property="og:title" content="兔农"><meta property="og:url" content="https://schtonn.github.io/blog/posts/rabbit/index.html"><meta property="og:site_name" content="schtonn"><meta property="og:description" content="前置知识
矩阵快速幂,扩展欧几里得求逆元,基本的找规律能力。
题面
(luogu P2020)"><meta property="og:locale" content="en_US"><meta property="article:published_time" content="2021-04-13T14:27:26.970Z"><meta property="article:modified_time" content="2022-10-19T15:02:06.666Z"><meta property="article:author" content="Alex"><meta property="article:tag" content="math"><meta name="twitter:card" content="summary"><link rel="canonical" href="https://schtonn.github.io/blog/posts/rabbit/"><script id="page-configurations">CONFIG.page={sidebar:"",isHome:!1,isPost:!0,lang:"en"}</script><title>兔农 | schtonn</title><noscript><style>.sidebar-inner,.use-motion .brand,.use-motion .collection-header,.use-motion .comments,.use-motion .menu-item,.use-motion .pagination,.use-motion .post-block,.use-motion .post-body,.use-motion .post-header{opacity:initial}.use-motion .site-subtitle,.use-motion .site-title{opacity:initial;top:initial}.use-motion .logo-line-before i{left:initial}.use-motion .logo-line-after i{right:initial}</style></noscript></head><body itemscope itemtype="http://schema.org/WebPage"><div class="container use-motion"><div class="headband"></div><header class="header" itemscope itemtype="http://schema.org/WPHeader"><div class="header-inner"><div class="site-brand-container"><div class="site-nav-toggle"><div class="toggle" aria-label="Toggle navigation bar"><span class="toggle-line toggle-line-first"></span><span class="toggle-line toggle-line-middle"></span><span class="toggle-line toggle-line-last"></span></div></div><div class="site-meta"><a href="/blog/" class="brand" rel="start"><span class="logo-line-before"><i></i></span><h1 class="site-title">schtonn</h1><span class="logo-line-after"><i></i></span></a><p class="site-subtitle" itemprop="description">schtonn</p></div><div class="site-nav-right"><div class="toggle popup-trigger"></div></div></div><nav class="site-nav"><ul id="menu" class="menu"><li class="menu-item menu-item-home"><a href="/blog/" rel="section"><i class="fa fa-fw fa-home"></i> Home</a></li><li class="menu-item menu-item-tags"><a href="/blog/tags/" rel="section"><i class="fa fa-fw fa-tags"></i> Tags</a></li><li class="menu-item menu-item-archives"><a href="/blog/archives/" rel="section"><i class="fa fa-fw fa-archive"></i> Archives</a></li><li class="menu-item menu-item-games"><a href="/blog/games/" rel="section"><i class="fa fa-fw fa-gamepad"></i> Games</a></li></ul></nav></div></header><div class="back-to-top"><i class="fa fa-arrow-up"></i> <span>0%</span></div><main class="main"><div class="main-inner"><div class="content-wrap"><div class="content post posts-expand"><article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en"><link itemprop="mainEntityOfPage" href="https://schtonn.github.io/blog/posts/rabbit/"><span hidden itemprop="author" itemscope itemtype="http://schema.org/Person"><meta itemprop="image" content="/blog/images/avatar.gif"><meta itemprop="name" content="Alex"><meta itemprop="description" content="blog"></span><script type="text/javascript" src="/blog/js/md5.js"></script><script></script><script>document.oncopy=function(e){window.event&&(e=window.event);try{var t=e.srcElement;return"INPUT"==t.tagName&&"text"==t.type.toLowerCase()||"TEXTAREA"==t.tagName}catch(e){return!1}}</script><span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization"><meta itemprop="name" content="schtonn"></span><header class="post-header"><h1 class="post-title" itemprop="name headline"> 兔农</h1><div class="post-meta"><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-o"></i></span> <span class="post-meta-item-text">Posted on</span> <time title="Created: 2021-Apr-13 22:27:26" itemprop="dateCreated datePublished" datetime="2021-04-13T22:27:26+08:00">2021-Apr-13</time></span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-check-o"></i></span> <span class="post-meta-item-text">Edited on</span> <time title="Modified: 2022-Oct-19 23:02:06" itemprop="dateModified" datetime="2022-10-19T23:02:06+08:00">2022-Oct-19</time></span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-comment-o"></i></span> <span class="post-meta-item-text">Valine:</span><a title="valine" href="/blog/posts/rabbit/#valine-comments" itemprop="discussionUrl"><span class="post-comments-count valine-comment-count" data-xid="/blog/posts/rabbit/" itemprop="commentCount"></span></a></span></div></header><div class="post-body" itemprop="articleBody"><h2 id="前置知识">前置知识</h2><p><a href="/blog/posts/matrix-pow">矩阵快速幂</a>,扩展欧几里得求逆元,基本的找规律能力。</p><h2 id="题面">题面</h2><p>(<a href="https://www.luogu.com.cn/problem/P2020" target="_blank" rel="noopener">luogu P2020</a>)<a id="more"></a> ### 问题描述 农夫栋栋近年收入不景气,正在他发愁如何能多赚点钱时,他听到隔壁的小朋友在讨论兔子繁殖的问题。</p><p>问题是这样的:第一个月初有一对刚出生的小兔子,经过两个月长大后,这对兔子从第三个月开始,每个月初生一对小兔子。新出生的小兔子生长两个月后又能每个月生出一对小兔子。问第n个月有多少对兔子?</p><p>聪明的你可能已经发现,第n个月的兔子数正好是第n个Fibonacci(斐波那契)数。栋栋不懂什么是Fibonacci数,但他也发现了规律:第i+2个月的兔子对数等于第i个月的兔子对数加上第i+1个月的兔子对数。前几个月的兔子对数依次为:</p><blockquote><p>1 1 2 3 5 8 13 21 34 …</p></blockquote><p>栋栋发现越到后面兔子对数增长的越快,期待养兔子一定能赚大钱,于是栋栋在第一个月初买了一对小兔子开始饲养。</p><p>每天,栋栋都要给兔子们喂食,兔子们吃食时非常特别,总是每k对兔子围成一圈,最后剩下的不足k对的围成一圈,由于兔子特别害怕孤独,从第三个月开始,如果吃食时围成某一个圈的只有一对兔子,这对兔子就会很快死掉。</p><p>我们假设死去的总是刚出生的兔子,那么每个月的兔子对数仍然是可以计算的。例如,当k=7时,前几个月的兔子对数依次为:</p><blockquote><p>1 1 2 3 5 <strong>7</strong> 12 19 31 <strong>49</strong> 80 …</p></blockquote><p>给定n,你能帮助栋栋计算第n个月他有多少对兔子么?由于答案可能非常大,你只需要告诉栋栋第n个月的兔子对数除p的余数即可。 ### 输入格式 从文件rabbit.in中读入数据。</p><p>输入一行,包含三个正整数n, k, p。 ### 输出格式 输出到文件rabbit.out中。</p><p>输出一行,包含一个整数,表示栋栋第n个月的兔子对数除p的余数。 ### 样例 输入1:</p><figure class="highlight plain"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line">6 7 100</span><br></pre></td></tr></table></figure><p>输出1:</p><figure class="highlight plain"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line">7</span><br></pre></td></tr></table></figure><p>输入2:</p><figure class="highlight plain"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line">7 7 5</span><br></pre></td></tr></table></figure><p>输出2:</p><figure class="highlight plain"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line">2</span><br></pre></td></tr></table></figure><h2 id="题意">题意</h2><p>首先理解一下题意:</p><p><span class="math display">\[F_i=\left\{ \begin{array}{lr} F_{i-1}+F_{i-2}& F_{i-1}+F_{i-2}\not\equiv1\pmod k\\ F_{i-1}+F_{i-2}-1& F_{i-1}+F_{i-2}\equiv1\pmod k\\ \end{array} \right. \]</span></p><p>给定 <span class="math inline">\(n\)</span>,<span class="math inline">\(k\)</span>,<span class="math inline">\(p\)</span>,求 <span class="math inline">\(F(n)\bmod p\)</span>。</p><p>可以看出,它是一个略加修改的斐波那契数列,我们显然会想到使用矩阵快速幂,然而由于它会在不可预知的地方进行减一,简单地套用矩阵快速幂就无法达成目标。</p><h2 id="规律">规律</h2><p>遇到这种问题,可以先手推一下规律。</p><p>由于一个具有斐波那契数列性质地数列可以完全由一个二元组 <span class="math inline">\((a,b)\)</span> 固定,我们可以用一个二元组来表示当前状态。</p><p>例如从 <span class="math inline">\((1,1)\)</span> 开始,<span class="math inline">\(k=7\)</span>。</p><p><span class="math display">\[(1,1)-(1,2)-(2,3)-(3,5)-(5,1\rightarrow0)-(0,5)-(5,5)-\cdots\]</span></p><p>又如从 <span class="math inline">\((2,2)\)</span> 开始:</p><p><span class="math display">\[\begin{array}{lr}(2,2)-(2,4)-(4,6)-(6,3)-(3,2)-(2,5)-(5,0)-(0,5)-\\(5,5)-(5,3)-(3,1\rightarrow0)-(0,3)-(3,3)-\cdots\end{array}\]</span></p><p>可以得知,如果某个状态进入了 <span class="math inline">\((b,1)\)</span>,它就会被减一成为 <span class="math inline">\((b,0)\)</span>,接下来成为 <span class="math inline">\((0,b)-(b,b)\)</span>,这样我们就可以以 <span class="math inline">\((a,a)\)</span> 为节点,从某个 <span class="math inline">\((a,a)\)</span> 用简单矩阵快速幂推到下一个 <span class="math inline">\((b,1)\)</span>,然后减一并继续推进到 <span class="math inline">\((b,b)\)</span>,循环完成整个过程。</p><p>放上一个 <span class="math inline">\(k=7\)</span> 时的完整图表:</p><figure class="highlight plain"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br></pre></td><td class="code"><pre><span class="line">(1,1)-(1,2)-(2,3)-(3,5)-(5,1);</span><br><span class="line">(2,2)-(2,4)-(4,6)-(6,3)-(3,2)-(2,5)-(5,0)-(5,5)-(5,3)-(3,1);</span><br><span class="line">(3,3)-(3,6)-(6,2)-(2,1);</span><br><span class="line">(4,4)-(4,1);</span><br><span class="line">(5,5)-(5,3)-(3,1);</span><br><span class="line">(6,6)-(6,5)-(5,4)-(4,2)-(2,6)-(6,1);</span><br></pre></td></tr></table></figure><p>注意到它没有那么友好,可能出现自环,两条路径的交集等情况,特别需要注意死循环,编写部分分代码时需要小心。</p><h2 id="k2-算法">k^2 算法</h2><p>令 <span class="math inline">\((i,i)\)</span> 经过 <span class="math inline">\(e_i\)</span> 步到达 <span class="math inline">\((g_i,1)\)</span>,可以在 <span class="math inline">\(O(k^2)\)</span> 的时间内维护 <span class="math inline">\(e_i\)</span> 和 <span class="math inline">\(g_i\)</span>。</p><p>还是以 <span class="math inline">\(k=7\)</span> 为例:</p><p><span class="math display">\[e:4,10,3,1,2,5\]</span> <span class="math display">\[g:5,3,2,4,3,6\]</span></p><p>即 <span class="math inline">\((1,1)\)</span> 经过 <span class="math inline">\(4\)</span> 步到达 <span class="math inline">\((5,1)\)</span>,<span class="math inline">\((2,2)\)</span> 经过 <span class="math inline">\(10\)</span> 步到达 <span class="math inline">\((3,1)\)</span>,etc.</p><p>求出这个之后我们就可以用矩阵快速幂来解决 <span class="math inline">\((a,a)\)</span> 到 <span class="math inline">\((b,b)\)</span> 的跳跃了。</p><p>这里面还有一些实现细节需要说明一下。由于原来斐波那契数列的递推矩阵实际上是做不到减一的,不过精通矩阵运算的人们都知道,我们只需要加一个常数项,然后稍微修改一下递推矩阵就好了。</p><p>原来的矩阵是这样的:</p><p><span class="math display">\[ \left[\begin{array}{lr}F_{n+1}\\F_n\end{array}\right]= \left[\begin{array}{lr}1&1\\1&0\end{array}\right]\times \left[\begin{array}{lr}F_n\\F_{n-1}\end{array}\right] \]</span></p><p>现在正常递推改成了这样: <span class="math display">\[ \left[\begin{array}{lr}F_{n+1}\\F_n\\1\end{array}\right]= \left[\begin{array}{lr}1&1&0\\1&0&0\\0&0&1\end{array}\right]\times \left[\begin{array}{lr}F_n\\F_{n-1}\\1\end{array}\right] \]</span></p><p>如果我们想减一,就可以这样: <span class="math display">\[ \left[\begin{array}{lr}F_n-1\\F_{n-1}\\1\end{array}\right]= \left[\begin{array}{lr}1&0&-1\\0&1&0\\0&0&1\end{array}\right]\times \left[\begin{array}{lr}F_n\\F_{n-1}\\1\end{array}\right] \]</span></p><p>如果想推一步的同时减一,就是这样: <span class="math display">\[ \left[\begin{array}{lr}F_{n+1}-1\\F_n\\1\end{array}\right]= \left[\begin{array}{lr}1&1&-1\\1&0&0\\0&0&1\end{array}\right]\times \left[\begin{array}{lr}F_n\\F_{n-1}\\1\end{array}\right] \]</span></p><p>将正常递推的那个矩阵设为 <span class="math inline">\(A\)</span>,推一步同时减一的矩阵设为 <span class="math inline">\(B\)</span>,最终的算式就是这样:</p><p><span class="math display">\[\cdots BA^{e_{g_1}-1}A^2BA^{e_1-1} \left[\begin{array}{lr}F_2\\F_1\\1\end{array}\right]\]</span></p><p>然后为了符号方便,我们记 <span class="math inline">\(F_0=0\)</span>,<span class="math inline">\(F_{-1}=1\)</span>,就可以将递推式写为:</p><p><span class="math display">\[\cdots BA^{e_{g_1}+1}BA^{e_1+1}\left[\begin{array}{lr}F_0\\F_{-1}\\1\end{array}\right]\]</span></p><p>这样,<span class="math inline">\(O(k^2)\)</span> 算法就妥妥地实现了。</p><h2 id="k-log-k-算法">k log k 算法</h2><p>原来求 <span class="math inline">\(e\)</span> 和 <span class="math inline">\(g\)</span> 地算法其实有很大的提升空间,如果你进行了深入的调试就会发现,对于大点的数据,它有 90% 以上的 <span class="math inline">\((a,a)\)</span> 都陷入了死循环,这说明我们做了大量无用的计算,何不换个角度想想?</p><p>如果我们不用二元组,而用正常方式,把斐波那契数列取模 <span class="math inline">\(k\)</span>,不管题目中的减一,写出来看看有什么发现?</p><figure class="highlight plain"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line">1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1</span><br></pre></td></tr></table></figure><p>发现它在这里进入了循环。</p><p>那么我们把数列乘上某个系数,并继续对 <span class="math inline">\(k\)</span> 取模,只写到第一次出现1的地方,再列出来看看有什么发现?</p><figure class="highlight plain"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br></pre></td><td class="code"><pre><span class="line">1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1</span><br><span class="line">2 2 4 6 3 2 5 0 5 5 3 1</span><br><span class="line">3 3 2 6 1</span><br><span class="line">4 4 1</span><br><span class="line">5 5 3 1</span><br><span class="line">6 6 5 4 2 6 1</span><br></pre></td></tr></table></figure><p>这跟前面的二元组好像没什么区别,但是如果仔细观察,其实每一行的值都是它所对应的真正的数列值,乘上这行的系数,再取模k,也就是那个列最上面的数乘那行最左边的数。</p><p>如果我们对第一行的每个数求逆元,求得的就正是它所对应的 <span class="math inline">\(1\)</span> 的位置所在的行数!</p><p>这时我们只需要用扩展欧几里得在 <span class="math inline">\(O(k\log k)\)</span> 的时间内求逆元,就可以随之求出所有 <span class="math inline">\(e\)</span> 和 <span class="math inline">\(g\)</span> 的值!</p><p>虽然这个数列进入循环节之前可能不止有 <span class="math inline">\(k\)</span> 项,但是可以证明它必然有循环节(抽屉原理),而且根据<a href="https://en.wikipedia.org/wiki/Pisano_period" target="_blank" rel="noopener">皮萨诺周期</a>可以证明它不会超过 <span class="math inline">\(6k\)</span> 项,所以复杂度确实是 <span class="math inline">\(O(k\log k)\)</span> 的。</p><p>当然,这只是第一部分,求出 <span class="math inline">\(e,g\)</span> 后要需要做一些优化,因为对于矩阵的跳跃,如果 <span class="math inline">\(n\)</span> 足够大,很有可能会进入一个循环,这时记录下一整个循环的递推矩阵之乘积 <span class="math inline">\(C\)</span>,然后再套用一次矩阵快速幂,可以省去大量时间,具体实现细节都在代码里了。</p><h2 id="代码">代码</h2><figure class="highlight cpp"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br><span class="line">26</span><br><span class="line">27</span><br><span class="line">28</span><br><span class="line">29</span><br><span class="line">30</span><br><span class="line">31</span><br><span class="line">32</span><br><span class="line">33</span><br><span class="line">34</span><br><span class="line">35</span><br><span class="line">36</span><br><span class="line">37</span><br><span class="line">38</span><br><span class="line">39</span><br><span class="line">40</span><br><span class="line">41</span><br><span class="line">42</span><br><span class="line">43</span><br><span class="line">44</span><br><span class="line">45</span><br><span class="line">46</span><br><span class="line">47</span><br><span class="line">48</span><br><span class="line">49</span><br><span class="line">50</span><br><span class="line">51</span><br><span class="line">52</span><br><span class="line">53</span><br><span class="line">54</span><br><span class="line">55</span><br><span class="line">56</span><br><span class="line">57</span><br><span class="line">58</span><br><span class="line">59</span><br><span class="line">60</span><br><span class="line">61</span><br><span class="line">62</span><br><span class="line">63</span><br><span class="line">64</span><br><span class="line">65</span><br><span class="line">66</span><br><span class="line">67</span><br><span class="line">68</span><br><span class="line">69</span><br><span class="line">70</span><br><span class="line">71</span><br><span class="line">72</span><br><span class="line">73</span><br><span class="line">74</span><br><span class="line">75</span><br><span class="line">76</span><br><span class="line">77</span><br><span class="line">78</span><br><span class="line">79</span><br><span class="line">80</span><br><span class="line">81</span><br><span class="line">82</span><br><span class="line">83</span><br><span class="line">84</span><br><span class="line">85</span><br><span class="line">86</span><br><span class="line">87</span><br><span class="line">88</span><br><span class="line">89</span><br><span class="line">90</span><br><span class="line">91</span><br><span class="line">92</span><br><span class="line">93</span><br><span class="line">94</span><br><span class="line">95</span><br><span class="line">96</span><br><span class="line">97</span><br><span class="line">98</span><br><span class="line">99</span><br><span class="line">100</span><br><span class="line">101</span><br><span class="line">102</span><br><span class="line">103</span><br><span class="line">104</span><br><span class="line">105</span><br><span class="line">106</span><br><span class="line">107</span><br><span class="line">108</span><br><span class="line">109</span><br><span class="line">110</span><br><span class="line">111</span><br><span class="line">112</span><br><span class="line">113</span><br><span class="line">114</span><br><span class="line">115</span><br><span class="line">116</span><br><span class="line">117</span><br><span class="line">118</span><br><span class="line">119</span><br><span class="line">120</span><br><span class="line">121</span><br><span class="line">122</span><br><span class="line">123</span><br><span class="line">124</span><br><span class="line">125</span><br><span class="line">126</span><br><span class="line">127</span><br><span class="line">128</span><br><span class="line">129</span><br><span class="line">130</span><br><span class="line">131</span><br><span class="line">132</span><br><span class="line">133</span><br><span class="line">134</span><br><span class="line">135</span><br><span class="line">136</span><br><span class="line">137</span><br><span class="line">138</span><br><span class="line">139</span><br><span class="line">140</span><br><span class="line">141</span><br><span class="line">142</span><br><span class="line">143</span><br><span class="line">144</span><br><span class="line">145</span><br><span class="line">146</span><br><span class="line">147</span><br><span class="line">148</span><br><span class="line">149</span><br><span class="line">150</span><br><span class="line">151</span><br><span class="line">152</span><br><span class="line">153</span><br></pre></td><td class="code"><pre><span class="line"><span class="meta">#<span class="meta-keyword">include</span> <span class="meta-string">"bits/stdc++.h"</span></span></span><br><span class="line"><span class="keyword">using</span> <span class="keyword">namespace</span> <span class="built_in">std</span>;</span><br><span class="line"><span class="keyword">typedef</span> <span class="keyword">long</span> <span class="keyword">long</span> ll;</span><br><span class="line"><span class="keyword">const</span> ll N=<span class="number">1000010</span>;</span><br><span class="line">ll m,n,k,p;</span><br><span class="line"><span class="class"><span class="keyword">struct</span> <span class="title">matrix</span>{</span></span><br><span class="line"> ll v[<span class="number">5</span>][<span class="number">5</span>];</span><br><span class="line"> ll x,y;</span><br><span class="line">}f,A,B,I,ans;</span><br><span class="line">ll e[N],g[N],inv[N],vis[N];</span><br><span class="line"><span class="function"><span class="keyword">void</span> <span class="title">exgcd</span><span class="params">(ll a,ll b,ll& d,ll& x,ll& y)</span></span>{<span class="comment">//这些是求逆元</span></span><br><span class="line"> <span class="keyword">if</span>(!b){</span><br><span class="line"> d=a;</span><br><span class="line"> x=<span class="number">1</span>;y=<span class="number">0</span>;</span><br><span class="line"> <span class="keyword">return</span>;</span><br><span class="line"> }</span><br><span class="line"> exgcd(b,a%b,d,y,x);</span><br><span class="line"> y-=x*(a/b);</span><br><span class="line">}</span><br><span class="line"><span class="function">ll <span class="title">getinv</span><span class="params">(ll a)</span></span>{</span><br><span class="line"> ll d,x,y;</span><br><span class="line"> exgcd(a,k,d,x,y);</span><br><span class="line"> <span class="keyword">return</span> d==<span class="number">1</span>?(x+k)%k:<span class="number">-1</span>;</span><br><span class="line">}</span><br><span class="line">ostream&<span class="keyword">operator</span><<(ostream&ous,matrix a){<span class="comment">//矩阵运算</span></span><br><span class="line"> <span class="keyword">for</span>(ll i=<span class="number">0</span>;i<a.x;i++){</span><br><span class="line"> <span class="keyword">for</span>(ll j=<span class="number">0</span>;j<a.y;j++){</span><br><span class="line"> ous<<a.v[i][j]<<<span class="string">' '</span>;</span><br><span class="line"> }</span><br><span class="line"> ous<<<span class="built_in">endl</span>;</span><br><span class="line"> }</span><br><span class="line"> <span class="keyword">return</span> ous;</span><br><span class="line">}</span><br><span class="line">matrix <span class="keyword">operator</span>+(matrix a,matrix b){</span><br><span class="line"> matrix c;</span><br><span class="line"> <span class="keyword">if</span>(a.x!=b.x||a.y!=b.y)<span class="keyword">return</span> c;</span><br><span class="line"> ll x=a.x,y=a.y;</span><br><span class="line"> c.x=x;</span><br><span class="line"> c.y=y;</span><br><span class="line"> <span class="keyword">for</span>(ll i=<span class="number">0</span>;i<x;i++){</span><br><span class="line"> <span class="keyword">for</span>(ll j=<span class="number">0</span>;j<y;j++){</span><br><span class="line"> c.v[i][j]=(a.v[i][j]+b.v[i][j])%p;</span><br><span class="line"> }</span><br><span class="line"> }</span><br><span class="line"> <span class="keyword">return</span> c;</span><br><span class="line">}</span><br><span class="line">matrix <span class="keyword">operator</span>*(matrix a,matrix b){</span><br><span class="line"> matrix c;</span><br><span class="line"> <span class="keyword">if</span>(a.y!=b.x)<span class="keyword">return</span> c;</span><br><span class="line"> ll x=a.x,y=b.y,z=a.y;</span><br><span class="line"> c.x=x;</span><br><span class="line"> c.y=y;</span><br><span class="line"> <span class="keyword">for</span>(ll i=<span class="number">0</span>;i<x;i++){</span><br><span class="line"> <span class="keyword">for</span>(ll j=<span class="number">0</span>;j<y;j++){</span><br><span class="line"> c.v[i][j]=<span class="number">0</span>;</span><br><span class="line"> <span class="keyword">for</span>(ll k=<span class="number">0</span>;k<z;k++){</span><br><span class="line"> c.v[i][j]=(c.v[i][j]+a.v[i][k]*b.v[k][j])%p;</span><br><span class="line"> }</span><br><span class="line"> }</span><br><span class="line"> }</span><br><span class="line"> <span class="keyword">return</span> c;</span><br><span class="line">}</span><br><span class="line">matrix <span class="keyword">operator</span>^(matrix a,ll b){<span class="comment">//我把快速幂也重载了</span></span><br><span class="line"> matrix c=I;</span><br><span class="line"> <span class="keyword">while</span>(b){</span><br><span class="line"> <span class="keyword">if</span>(b&<span class="number">1</span>)c=c*a;</span><br><span class="line"> a=a*a;</span><br><span class="line"> b>>=<span class="number">1</span>;</span><br><span class="line"> }</span><br><span class="line"> <span class="keyword">return</span> c;</span><br><span class="line">}</span><br><span class="line"><span class="function"><span class="keyword">void</span> <span class="title">init</span><span class="params">()</span></span>{</span><br><span class="line"> A.x=A.y=B.x=B.y=<span class="number">3</span>;</span><br><span class="line"> I.x=I.y=<span class="number">3</span>;</span><br><span class="line"> f.x=<span class="number">3</span>;f.y=<span class="number">1</span>;</span><br><span class="line"> f.v[<span class="number">1</span>][<span class="number">0</span>]=f.v[<span class="number">2</span>][<span class="number">0</span>]=<span class="number">1</span>;</span><br><span class="line"> A.v[<span class="number">0</span>][<span class="number">0</span>]=A.v[<span class="number">0</span>][<span class="number">1</span>]=A.v[<span class="number">1</span>][<span class="number">0</span>]=A.v[<span class="number">2</span>][<span class="number">2</span>]=<span class="number">1</span>;</span><br><span class="line"> B.v[<span class="number">0</span>][<span class="number">0</span>]=B.v[<span class="number">0</span>][<span class="number">1</span>]=B.v[<span class="number">1</span>][<span class="number">0</span>]=B.v[<span class="number">2</span>][<span class="number">2</span>]=<span class="number">1</span>;</span><br><span class="line"> B.v[<span class="number">0</span>][<span class="number">2</span>]=<span class="number">-1</span>;</span><br><span class="line"> I.v[<span class="number">0</span>][<span class="number">0</span>]=I.v[<span class="number">1</span>][<span class="number">1</span>]=I.v[<span class="number">2</span>][<span class="number">2</span>]=<span class="number">1</span>;</span><br><span class="line">}</span><br><span class="line"><span class="function"><span class="keyword">int</span> <span class="title">main</span><span class="params">()</span></span>{</span><br><span class="line"> <span class="comment">// freopen("rabbit.in","r",stdin);</span></span><br><span class="line"> <span class="comment">// freopen("rabbit.out","w",stdout);</span></span><br><span class="line"> init();</span><br><span class="line"> <span class="built_in">cin</span>>>n>>k>>p;</span><br><span class="line"> <span class="keyword">int</span> a=<span class="number">1</span>,b=<span class="number">2</span>;</span><br><span class="line"> <span class="built_in">memset</span>(e,<span class="number">-1</span>,<span class="keyword">sizeof</span>(e));</span><br><span class="line"> <span class="keyword">for</span>(<span class="keyword">int</span> i=<span class="number">1</span>;i<=k*k;i++){<span class="comment">//先预处理e和g</span></span><br><span class="line"> <span class="keyword">if</span>(a==<span class="number">1</span>&&b==<span class="number">1</span>)<span class="keyword">break</span>;</span><br><span class="line"> <span class="keyword">if</span>(!inv[b])inv[b]=getinv(b);</span><br><span class="line"> <span class="keyword">if</span>(inv[b]==<span class="number">-1</span>){</span><br><span class="line"> swap(a,b);</span><br><span class="line"> b=(a+b)%k;</span><br><span class="line"> <span class="keyword">continue</span>;</span><br><span class="line"> }</span><br><span class="line"> <span class="keyword">if</span>(e[inv[b]]==<span class="number">-1</span>){</span><br><span class="line"> e[inv[b]]=i;</span><br><span class="line"> g[inv[b]]=a*inv[b]%k;</span><br><span class="line"> }</span><br><span class="line"> swap(a,b);</span><br><span class="line"> b=(a+b)%k;</span><br><span class="line"> }</span><br><span class="line"> ll flag=<span class="number">0</span>;</span><br><span class="line"> ll cur=<span class="number">1</span>,ptr=<span class="number">0</span>;</span><br><span class="line"> <span class="keyword">while</span>(<span class="literal">true</span>){<span class="comment">//沿着路线走一走,碰到循环就退出</span></span><br><span class="line"> <span class="keyword">if</span>(vis[cur]){</span><br><span class="line"> flag=cur;</span><br><span class="line"> <span class="keyword">break</span>;</span><br><span class="line"> }</span><br><span class="line"> vis[cur]=<span class="number">1</span>;</span><br><span class="line"> <span class="keyword">if</span>(ptr+e[cur]+<span class="number">1</span>>n||e[cur]==<span class="number">-1</span>){</span><br><span class="line"> f=(A^(n-ptr))*f;</span><br><span class="line"> <span class="keyword">break</span>;</span><br><span class="line"> }</span><br><span class="line"> f=(A^(e[cur]+<span class="number">1</span>))*f;</span><br><span class="line"> ptr+=e[cur]+<span class="number">1</span>;</span><br><span class="line"> <span class="keyword">if</span>(ptr>=n)<span class="keyword">break</span>;</span><br><span class="line"> f=B*f;</span><br><span class="line"> ptr++;</span><br><span class="line"> cur=g[cur];</span><br><span class="line"> <span class="keyword">if</span>(ptr>=n)<span class="keyword">break</span>;</span><br><span class="line"> }</span><br><span class="line"> matrix C;</span><br><span class="line"> ll siz;</span><br><span class="line"> <span class="keyword">if</span>(flag){<span class="comment">//如果在循环里,那就求一下C</span></span><br><span class="line"> siz=e[flag]+<span class="number">2</span>;</span><br><span class="line"> C=B*(A^(e[flag]+<span class="number">1</span>));</span><br><span class="line"> <span class="keyword">for</span>(ll i=g[flag];i!=flag;i=g[i]){</span><br><span class="line"> C=B*(A^(e[i]+<span class="number">1</span>))*C;</span><br><span class="line"> siz+=e[i]+<span class="number">2</span>;</span><br><span class="line"> }</span><br><span class="line"> f=(C^((n-ptr)/siz))*f;<span class="comment">//这一行做了大部分运算</span></span><br><span class="line"> <span class="keyword">if</span>((n-ptr)%siz){<span class="comment">//还有剩下的部分,那就接着算完</span></span><br><span class="line"> ptr=n-((n-ptr)%siz);</span><br><span class="line"> <span class="keyword">while</span>(<span class="literal">true</span>){</span><br><span class="line"> <span class="keyword">if</span>(ptr+e[cur]+<span class="number">1</span>>n){</span><br><span class="line"> f=(A^(n-ptr))*f;</span><br><span class="line"> <span class="keyword">break</span>;</span><br><span class="line"> }</span><br><span class="line"> f=(A^(e[cur]+<span class="number">1</span>))*f;</span><br><span class="line"> ptr+=e[cur]+<span class="number">1</span>;</span><br><span class="line"> <span class="keyword">if</span>(ptr>=n)<span class="keyword">break</span>;</span><br><span class="line"> f=B*f;</span><br><span class="line"> ptr++;</span><br><span class="line"> cur=g[cur];</span><br><span class="line"> <span class="keyword">if</span>(ptr>=n)<span class="keyword">break</span>;</span><br><span class="line"> }</span><br><span class="line"> }</span><br><span class="line"> } </span><br><span class="line"> <span class="built_in">cout</span><<(f.v[<span class="number">0</span>][<span class="number">0</span>]+p)%p<<<span class="built_in">endl</span>;<span class="comment">//完结</span></span><br><span class="line"> <span class="keyword">return</span> <span class="number">0</span>;</span><br><span class="line">}</span><br></pre></td></tr></table></figure></div><div><ul class="post-copyright"><li class="post-copyright-author"> <strong>Post author:</strong> Alex</li><li class="post-copyright-link"> <strong>Post link:</strong> <a href="https://schtonn.github.io/blog/posts/rabbit/" title="兔农">https://schtonn.github.io/blog/posts/rabbit/</a></li><li class="post-copyright-license"> <strong>Copyright Notice:</strong> All articles in this blog are licensed under<a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="noopener" target="_blank"><i class="fa fa-fw fa-creative-commons"></i> BY-NC-SA</a> unless stating additionally.</li></ul></div><footer class="post-footer"><div class="post-tags"><a href="/blog/tags/math/" rel="tag"><i class="fa fa-tag"></i> math</a></div><div class="post-nav"><div class="post-nav-item"><a href="/blog/posts/gen-func/" rel="prev" title="生成函数"><i class="fa fa-chevron-left"></i> 生成函数</a></div><div class="post-nav-item"> <a href="/blog/posts/matrix-pow-complex/" rel="next" title="复杂矩阵快速幂">复杂矩阵快速幂<i class="fa fa-chevron-right"></i></a></div></div></footer></article></div><div class="comments" id="valine-comments"></div><script>
- window.addEventListener('tabs:register', () => {
- let { activeClass } = CONFIG.comments;
- if (CONFIG.comments.storage) {
- activeClass = localStorage.getItem('comments_active') || activeClass;
- }
- if (activeClass) {
- let activeTab = document.querySelector(`a[href="#comment-${activeClass}"]`);
- if (activeTab) {
- activeTab.click();
- }
- }
- });
- if (CONFIG.comments.storage) {
- window.addEventListener('tabs:click', event => {
- if (!event.target.matches('.tabs-comment .tab-content .tab-pane')) return;
- let commentClass = event.target.classList[1];
- localStorage.setItem('comments_active', commentClass);
- });
- }
- </script></div><div class="toggle sidebar-toggle"><span class="toggle-line toggle-line-first"></span><span class="toggle-line toggle-line-middle"></span><span class="toggle-line toggle-line-last"></span></div><aside class="sidebar"><div class="sidebar-inner"><ul class="sidebar-nav motion-element"><li class="sidebar-nav-toc"> Table of Contents</li><li class="sidebar-nav-overview"> Overview</li></ul><div class="post-toc-wrap sidebar-panel"><div class="post-toc motion-element"><ol class="nav"><li class="nav-item nav-level-2"><a class="nav-link" href="#前置知识"><span class="nav-number">1.</span> <span class="nav-text">前置知识</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#题面"><span class="nav-number">2.</span> <span class="nav-text">题面</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#题意"><span class="nav-number">3.</span> <span class="nav-text">题意</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#规律"><span class="nav-number">4.</span> <span class="nav-text">规律</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#k2-算法"><span class="nav-number">5.</span> <span class="nav-text">k^2 算法</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#k-log-k-算法"><span class="nav-number">6.</span> <span class="nav-text">k log k 算法</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#代码"><span class="nav-number">7.</span> <span class="nav-text">代码</span></a></li></ol></div></div><div class="site-overview-wrap sidebar-panel"><div class="site-author motion-element" itemprop="author" itemscope itemtype="http://schema.org/Person"><p class="site-author-name" itemprop="name">Alex</p><div class="site-description" itemprop="description">blog</div></div><div class="site-state-wrap motion-element"><nav class="site-state"><div class="site-state-item site-state-posts"> <a href="/blog/archives"><span class="site-state-item-count">35</span> <span class="site-state-item-name">posts</span></a></div><div class="site-state-item site-state-tags"> <a href="/blog/tags/"><span class="site-state-item-count">8</span> <span class="site-state-item-name">tags</span></a></div></nav></div><div class="links-of-author motion-element"><span class="links-of-author-item"><a href="https://github.com/schtonn" title="GitHub → https://github.com/schtonn" rel="noopener" target="_blank"><i class="fa fa-fw fa-github"></i> GitHub</a></span><span class="links-of-author-item"><a href="mailto:schtonn@163.com" title="E-Mail → mailto:schtonn@163.com" rel="noopener" target="_blank"><i class="fa fa-fw fa-envelope"></i> E-Mail</a></span></div><div class="links-of-blogroll motion-element"><div class="links-of-blogroll-title"><i class="fa fa-fw fa-link"></i> Links</div><ul class="links-of-blogroll-list"><li class="links-of-blogroll-item"> <a href="https://yonghong.github.io/" title="https://yonghong.github.io" rel="noopener" target="_blank">Yonghong</a></li><li class="links-of-blogroll-item"> <a href="https://source.unsplash.com/random/1600x900" title="https://source.unsplash.com/random/1600x900" rel="noopener" target="_blank">Background</a></li></ul><iframe width="400" height="300" frameborder="0" src="https://cdn.abowman.com/widgets/treefrog/index.html?up_bodyColor=2d2d2d&up_pattern=0&up_patternColor=000000&up_footColor=2d2d2d&up_eyeColor=3a3a3a&up_bellySize=50&up_backgroundColor=222222&up_tongueColor=2b2d2d&up_flyColor=3a3a3a&up_releaseFly=0"></iframe></div></div></div></aside><div id="sidebar-dimmer"></div></div></main><footer class="footer"><div class="footer-inner"><div class="copyright"> © 2019 – <span itemprop="copyrightYear">2023</span><span class="with-love"><i class="fa fa-user"></i></span> <span class="author" itemprop="copyrightHolder">Alexander</span></div></div></footer></div><script src="/blog/lib/anime.min.js"></script><script src="//cdn.jsdelivr.net/npm/lozad@1/dist/lozad.min.js"></script><script src="/blog/lib/velocity/velocity.min.js"></script><script src="/blog/lib/velocity/velocity.ui.min.js"></script><script src="/blog/js/utils.js"></script><script src="/blog/js/motion.js"></script><script src="/blog/js/schemes/muse.js"></script><script src="/blog/js/next-boot.js"></script><script>!function(){var t=document.createElement("script"),e=window.location.protocol.split(":")[0];t.src="https"===e?"https://zz.bdstatic.com/linksubmit/push.js":"http://push.zhanzhang.baidu.com/push.js";var s=document.getElementsByTagName("script")[0];s.parentNode.insertBefore(t,s)}()</script><script>
- if (typeof MathJax === 'undefined') {
- window.MathJax = {
- loader: {
- load: ['[tex]/mhchem'],
- source: {
- '[tex]/amsCd': '[tex]/amscd',
- '[tex]/AMScd': '[tex]/amscd'
- }
- },
- tex: {
- inlineMath: {'[+]': [['$', '$']]},
- packages: {'[+]': ['mhchem']},
- tags: 'ams'
- },
- options: {
- renderActions: {
- findScript: [10, doc => {
- document.querySelectorAll('script[type^="math/tex"]').forEach(node => {
- const display = !!node.type.match(/; *mode=display/);
- const math = new doc.options.MathItem(node.textContent, doc.inputJax[0], display);
- const text = document.createTextNode('');
- node.parentNode.replaceChild(text, node);
- math.start = {node: text, delim: '', n: 0};
- math.end = {node: text, delim: '', n: 0};
- doc.math.push(math);
- });
- }, '', false],
- insertedScript: [200, () => {
- document.querySelectorAll('mjx-container').forEach(node => {
- let target = node.parentNode;
- if (target.nodeName.toLowerCase() === 'li') {
- target.parentNode.classList.add('has-jax');
- }
- });
- }, '', false]
- }
- }
- };
- (function () {
- var script = document.createElement('script');
- script.src = '//cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js';
- script.defer = true;
- document.head.appendChild(script);
- })();
- } else {
- MathJax.startup.document.state(0);
- MathJax.texReset();
- MathJax.typeset();
- }
- </script><script>
- NexT.utils.loadComments(document.querySelector('#valine-comments'), () => {
- NexT.utils.getScript('https://cdn.jsdelivr.net/npm/valine@1/dist/Valine.min.js', () => {
- var GUEST = ['nick', 'mail', 'link'];
- var guest = 'nick,mail';
- guest = guest.split(',').filter(item => {
- return GUEST.includes(item);
- });
- new Valine({
- el : '#valine-comments',
- verify : false,
- notify : false,
- appId : 'BmologYYnRqCv0SLHDeDdA17-gzGzoHsz',
- appKey : 'w9mVebFMdCmY6Nh9vfcBGaGt',
- placeholder: "Comment...",
- avatar : 'mp',
- meta : guest,
- pageSize : '10' || 10,
- visitor : false,
- lang : 'en' || 'zh-cn',
- path : location.pathname,
- recordIP : true,
- serverURLs : ''
- });
- }, window.Valine);
- });
- </script></body></html>
|