12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- <!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=2"><meta name="theme-color" content="#222"><meta name="generator" content="Hexo 4.2.0"><link rel="apple-touch-icon" sizes="180x180" href="/blog/blog/images/apple-touch-icon-next.png"><link rel="icon" type="image/png" sizes="32x32" href="/blog/blog/images/favicon-frog.png"><link rel="icon" type="image/png" sizes="16x16" href="/blog/blog/images/favicon-frog.png"><link rel="mask-icon" href="/blog/blog/images/logo.svg" color="#222"><link rel="stylesheet" href="/blog/css/main.css"><link rel="stylesheet" href="//fonts.googleapis.com/css?family=Comic Sans MS:300,300italic,400,400italic,700,700italic|Consolas:300,300italic,400,400italic,700,700italic&display=swap&subset=latin,latin-ext"><link rel="stylesheet" href="/blog/lib/font-awesome/css/font-awesome.min.css"><link rel="stylesheet" href="/blog/lib/pace/pace-theme-minimal.min.css"><script src="/blog/lib/pace/pace.min.js"></script><script id="hexo-configurations">var NexT=window.NexT||{},CONFIG={hostname:"schtonn.github.io",root:"/blog/",scheme:"Muse",version:"7.8.0",exturl:!1,sidebar:{position:"left",display:"post",padding:18,offset:12,onmobile:!1},copycode:{enable:!0,show_result:!0,style:"flat"},back2top:{enable:!0,sidebar:!1,scrollpercent:!0},bookmark:{enable:!1,color:"#222",save:"auto"},fancybox:!1,mediumzoom:!1,lazyload:!0,pangu:!1,comments:{style:"tabs",active:"valine",storage:!0,lazyload:!1,nav:null,activeClass:"valine"},algolia:{hits:{per_page:10},labels:{input_placeholder:"Search for Posts",hits_empty:"We didn't find any results for the search: ${query}",hits_stats:"${hits} results found in ${time} ms"}},localsearch:{enable:!1,trigger:"auto",top_n_per_article:1,unescape:!1,preload:!1},motion:{enable:!0,async:!1,transition:{post_block:"fadeIn",post_header:"slideDownIn",post_body:"slideDownIn",coll_header:"slideLeftIn",sidebar:"slideUpIn"}}}</script><meta name="description" content="前置知识
中国剩余定理,
引入
从 \(n\) 个不同元素中取出 \(m\) 个元素的组合数,即 \(C_n^m\),是从 \(n\) 个不同元素中,取出 \(m\) 个元素所形成的组合个数。
我们需要使用各种方式求 \(C_n^m\),每个方式难度,速度和空间都有不同。"><meta property="og:type" content="article"><meta property="og:title" content="求组合数"><meta property="og:url" content="https://schtonn.github.io/blog/posts/combination/index.html"><meta property="og:site_name" content="schtonn"><meta property="og:description" content="前置知识
中国剩余定理,
引入
从 \(n\) 个不同元素中取出 \(m\) 个元素的组合数,即 \(C_n^m\),是从 \(n\) 个不同元素中,取出 \(m\) 个元素所形成的组合个数。
我们需要使用各种方式求 \(C_n^m\),每个方式难度,速度和空间都有不同。"><meta property="og:locale" content="en_US"><meta property="article:published_time" content="2021-01-01T12:26:59.000Z"><meta property="article:modified_time" content="2022-10-19T15:02:06.673Z"><meta property="article:author" content="Alex"><meta property="article:tag" content="math"><meta name="twitter:card" content="summary"><link rel="canonical" href="https://schtonn.github.io/blog/posts/combination/"><script id="page-configurations">CONFIG.page={sidebar:"",isHome:!1,isPost:!0,lang:"en"}</script><title>求组合数 | schtonn</title><noscript><style>.sidebar-inner,.use-motion .brand,.use-motion .collection-header,.use-motion .comments,.use-motion .menu-item,.use-motion .pagination,.use-motion .post-block,.use-motion .post-body,.use-motion .post-header{opacity:initial}.use-motion .site-subtitle,.use-motion .site-title{opacity:initial;top:initial}.use-motion .logo-line-before i{left:initial}.use-motion .logo-line-after i{right:initial}</style></noscript></head><body itemscope itemtype="http://schema.org/WebPage"><div class="container use-motion"><div class="headband"></div><header class="header" itemscope itemtype="http://schema.org/WPHeader"><div class="header-inner"><div class="site-brand-container"><div class="site-nav-toggle"><div class="toggle" aria-label="Toggle navigation bar"><span class="toggle-line toggle-line-first"></span><span class="toggle-line toggle-line-middle"></span><span class="toggle-line toggle-line-last"></span></div></div><div class="site-meta"><a href="/blog/" class="brand" rel="start"><span class="logo-line-before"><i></i></span><h1 class="site-title">schtonn</h1><span class="logo-line-after"><i></i></span></a><p class="site-subtitle" itemprop="description">schtonn</p></div><div class="site-nav-right"><div class="toggle popup-trigger"></div></div></div><nav class="site-nav"><ul id="menu" class="menu"><li class="menu-item menu-item-home"><a href="/blog/" rel="section"><i class="fa fa-fw fa-home"></i> Home</a></li><li class="menu-item menu-item-tags"><a href="/blog/tags/" rel="section"><i class="fa fa-fw fa-tags"></i> Tags</a></li><li class="menu-item menu-item-archives"><a href="/blog/archives/" rel="section"><i class="fa fa-fw fa-archive"></i> Archives</a></li><li class="menu-item menu-item-games"><a href="/blog/games/" rel="section"><i class="fa fa-fw fa-gamepad"></i> Games</a></li></ul></nav></div></header><div class="back-to-top"><i class="fa fa-arrow-up"></i> <span>0%</span></div><main class="main"><div class="main-inner"><div class="content-wrap"><div class="content post posts-expand"><article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en"><link itemprop="mainEntityOfPage" href="https://schtonn.github.io/blog/posts/combination/"><span hidden itemprop="author" itemscope itemtype="http://schema.org/Person"><meta itemprop="image" content="/blog/images/avatar.gif"><meta itemprop="name" content="Alex"><meta itemprop="description" content="blog"></span><script type="text/javascript" src="/blog/js/md5.js"></script><script></script><script>document.oncopy=function(e){window.event&&(e=window.event);try{var t=e.srcElement;return"INPUT"==t.tagName&&"text"==t.type.toLowerCase()||"TEXTAREA"==t.tagName}catch(e){return!1}}</script><span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization"><meta itemprop="name" content="schtonn"></span><header class="post-header"><h1 class="post-title" itemprop="name headline"> 求组合数</h1><div class="post-meta"><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-o"></i></span> <span class="post-meta-item-text">Posted on</span> <time title="Created: 2021-Jan-01 20:26:59" itemprop="dateCreated datePublished" datetime="2021-01-01T20:26:59+08:00">2021-Jan-01</time></span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-check-o"></i></span> <span class="post-meta-item-text">Edited on</span> <time title="Modified: 2022-Oct-19 23:02:06" itemprop="dateModified" datetime="2022-10-19T23:02:06+08:00">2022-Oct-19</time></span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-comment-o"></i></span> <span class="post-meta-item-text">Valine:</span><a title="valine" href="/blog/posts/combination/#valine-comments" itemprop="discussionUrl"><span class="post-comments-count valine-comment-count" data-xid="/blog/posts/combination/" itemprop="commentCount"></span></a></span></div></header><div class="post-body" itemprop="articleBody"><h2 id="前置知识">前置知识</h2><p>中国剩余定理,</p><h2 id="引入">引入</h2><p>从 <span class="math inline">\(n\)</span> 个不同元素中取出 <span class="math inline">\(m\)</span> 个元素的组合数,即 <span class="math inline">\(C_n^m\)</span>,是从 <span class="math inline">\(n\)</span> 个不同元素中,取出 <span class="math inline">\(m\)</span> 个元素所形成的组合个数。</p><p>我们需要使用各种方式求 <span class="math inline">\(C_n^m\)</span>,每个方式难度,速度和空间都有不同。</p><a id="more"></a><h2 id="朴素算法">朴素算法</h2><p>首先,求组合数有一个基本公式:</p><p><span class="math display">\[\large C_n^m=\dfrac{P_n^m}{P_m}=\dfrac{n!}{m!(n-m)!}\]</span></p><p><span class="math display">\[\large C_n^0=1\]</span></p><p>我们的朴素算法,就是每遇到一个组合数,都直接套用这个公式求阶乘。</p><figure class="highlight cpp"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br></pre></td><td class="code"><pre><span class="line"><span class="function"><span class="keyword">int</span> <span class="title">fact</span><span class="params">(<span class="keyword">int</span> x)</span></span>{</span><br><span class="line"> <span class="keyword">int</span> ans=<span class="number">1</span>;</span><br><span class="line"> <span class="keyword">for</span>(<span class="keyword">int</span> i=<span class="number">2</span>;i<=x;i++){</span><br><span class="line"> ans*=i;</span><br><span class="line"> }</span><br><span class="line"> <span class="keyword">return</span> ans;</span><br><span class="line">}</span><br><span class="line"><span class="function"><span class="keyword">int</span> <span class="title">C</span><span class="params">(<span class="keyword">int</span> n,<span class="keyword">int</span> m)</span></span>{</span><br><span class="line"> <span class="keyword">if</span>(m==<span class="number">0</span>)<span class="keyword">return</span> <span class="number">1</span>;</span><br><span class="line"> <span class="keyword">return</span> fact(n)/(fact(m)*fact(n-m));</span><br><span class="line">}</span><br></pre></td></tr></table></figure><p>这个算法适合 <span class="math inline">\(n,m\leq15\)</span>,时间复杂度极高,但是实现难度为零。</p><h2 id="杨辉三角">杨辉三角</h2><p>如果把组合数转换成实际问题,可以考虑每一步选定一个元素,那么一个组合数一定可以由更小的组合数转移而来。</p><p>具体思路为,<span class="math inline">\(C_n^m\)</span> 是 <span class="math inline">\(n\)</span> 中选 <span class="math inline">\(m\)</span> 个,考虑从 <span class="math inline">\(n-1\)</span> 个中选的所有情况,一部分是选新加入的这第 <span class="math inline">\(n\)</span> 个,一部分是不选。</p><p>那么可以列出这样一个式子:</p><p><span class="math display">\[\large C_n^m=C_{n-1}^{m-1}+C_{n-1}^m\]</span></p><p>(当然,通过数学的方式推也能推出来)</p><p>这时我们发现,如果把这个式子列成表,竖着拎起来,那就正好是一个杨辉三角(每一位等于上面左右两位的和)。</p><p>那么根据这个式子,就可以写出一种动态规划算法。</p><figure class="highlight cpp"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br></pre></td><td class="code"><pre><span class="line"><span class="keyword">int</span> C[N][M];</span><br><span class="line"><span class="function"><span class="keyword">void</span> <span class="title">calc</span><span class="params">(<span class="keyword">int</span> n,<span class="keyword">int</span> m)</span></span>{</span><br><span class="line"> <span class="keyword">for</span>(<span class="keyword">int</span> i=<span class="number">0</span>;i<=n;i++){</span><br><span class="line"> f[i][i]=<span class="number">1</span>;</span><br><span class="line"> f[i][<span class="number">0</span>]=<span class="number">1</span>;</span><br><span class="line"> }</span><br><span class="line"> <span class="keyword">for</span>(<span class="keyword">int</span> i=<span class="number">1</span>;i<=n;i++){</span><br><span class="line"> <span class="keyword">for</span>(<span class="keyword">int</span> j=<span class="number">1</span>;j<i;j++){</span><br><span class="line"> f[i][j]=f[i<span class="number">-1</span>][j]+f[i<span class="number">-1</span>][j<span class="number">-1</span>];</span><br><span class="line"> }</span><br><span class="line"> }</span><br><span class="line">}</span><br></pre></td></tr></table></figure><p>这个算法适合 <span class="math inline">\(n,m\leq10000\)</span>,时间复杂度适中,需要一个数组,而且实现难度也很低。</p><h2 id="lucas-定理">Lucas 定理</h2><p>求 <span class="math inline">\(C_m^n\bmod p\)</span>,<span class="math inline">\(p\)</span> 是质数。</p><p>对质数 <span class="math inline">\(p\)</span>,有 Lucas 定理: <span class="math display">\[\large C_n^m\bmod p=C_{\lfloor n/p\rfloor}^{\lfloor m/p\rfloor}\cdot C_{n\bmod p}^{m\bmod p}\bmod p\]</span></p><h3 id="证明">证明</h3><p>(摘自 <a href="https://oi-wiki.org/math/lucas/#lucas_1" target="_blank" rel="noopener">OI-wiki</a>)</p><p>考虑 <span class="math inline">\(C_p^n\bmod p\)</span> 的取值,注意到 <span class="math inline">\(C_p^n=\dfrac{p!}{n!(p-n)!}\)</span>,分子的质因子分解中 <span class="math inline">\(p\)</span> 次项恰为 <span class="math inline">\(1\)</span>,因此只有当 <span class="math inline">\(n=0\)</span> 或 <span class="math inline">\(n=p\)</span> 的时候 <span class="math inline">\(n!(p-n)!\)</span> 的质因子分解中含有 <span class="math inline">\(p\)</span>。进而我们可以得出: <span class="math display">\[\begin{aligned}(a+b)^p&=\sum_{n=0}^p C_p^n a^nb^{p-n}\\ &\equiv\sum_{n=0}^p[n=0\vee n=p]a^nb^{p-n}\\ &\equiv a^p+b^p\pmod p\end{aligned}\]</span></p><p>注意过程中没有用到费马小定理,因此这一推导不仅适用于整数,亦适用于多项式。因此我们可以考虑二项式 <span class="math inline">\(f(x)=(ax^n+bx^m)^p\bmod p\)</span> 的结果: <span class="math display">\[\begin{aligned}(ax^n+bx^m)^p&\equiv a^px^{pn}+b^px^{pm}\\ &\equiv ax^{pn}+bx^{pm}\\ &\equiv f(x^p)\end{aligned}\]</span></p><p>考虑二项式 <span class="math inline">\((1+x)^n\mod p\)</span>,那么 <span class="math inline">\(C_n^m\)</span> 就是求其在 <span class="math inline">\(x^m\)</span> 次项的取值。使用上述引理,我们可以得到: <span class="math display">\[\begin{aligned}(1+x)^n&\equiv(1+x)^{p\lfloor n/p\rfloor}(1+x)^{n\bmod p}\\&\equiv(1+x^p)^{\lfloor n/p\rfloor}(1+x)^{n\bmod p}\end{aligned}\]</span></p><p>注意前者只有在 <span class="math inline">\(p\)</span> 的倍数位置才有取值,而后者最高次项为 <span class="math inline">\(n\bmod p\leq p-1\)</span>,因此这两部分的卷积在任何一个位置只有最多一种方式贡献取值,即在前者部分取 <span class="math inline">\(p\)</span> 的倍数次项,后者部分取剩余项,即 <span class="math inline">\(C_n^m\bmod p=C_{\lfloor n/p\rfloor}^{\lfloor m/p\rfloor}\cdot C_{n\bmod p}^{m\bmod p}\bmod p\)</span>。</p><h3 id="求解">求解</h3><p>观察 Lucas 定理,可知 <span class="math inline">\(n\bmod p\)</span> 和 <span class="math inline">\(m\bmod p\)</span> 一定是小于 <span class="math inline">\(p\)</span> 的数,可以直接求解 <span class="math inline">\(C_{\lfloor n/p\rfloor}^{\lfloor m/p\rfloor}\)</span>,递归使用 Lucas 定理。</p><p><span class="math inline">\(C_{n\bmod p}^{m\bmod p}\)</span> 则由于 <span class="math inline">\(p\)</span> 是质数,利用费马小定理转化成 <span class="math inline">\(n!\)</span> 乘 <span class="math inline">\(m!(n-m)!\)</span> 的逆元,也就是 <span class="math inline">\(m!(n-m)!^{p-2}\)</span>。</p><figure class="highlight cpp"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br></pre></td><td class="code"><pre><span class="line"><span class="function"><span class="keyword">long</span> <span class="keyword">long</span> <span class="title">pow</span><span class="params">(<span class="keyword">long</span> <span class="keyword">long</span> a,<span class="keyword">long</span> <span class="keyword">long</span> b,<span class="keyword">long</span> <span class="keyword">long</span> m)</span></span>{</span><br><span class="line"> <span class="keyword">long</span> <span class="keyword">long</span> ans=<span class="number">1</span>;</span><br><span class="line"> a%=m;</span><br><span class="line"> <span class="keyword">while</span>(b){</span><br><span class="line"> <span class="keyword">if</span>(b&<span class="number">1</span>)ans=(ans%m)*(a%m)%m;</span><br><span class="line"> b/=<span class="number">2</span>;</span><br><span class="line"> a=(a%m)*(a%m)%m;</span><br><span class="line"> }</span><br><span class="line"> ans%=m;</span><br><span class="line"> <span class="keyword">return</span> ans;</span><br><span class="line">}</span><br><span class="line"><span class="function"><span class="keyword">long</span> <span class="keyword">long</span> <span class="title">inv</span><span class="params">(<span class="keyword">long</span> <span class="keyword">long</span> x,<span class="keyword">long</span> <span class="keyword">long</span> p)</span></span>{</span><br><span class="line"> <span class="keyword">return</span> <span class="built_in">pow</span>(x,p<span class="number">-2</span>,p);</span><br><span class="line">}</span><br><span class="line"><span class="function"><span class="keyword">long</span> <span class="keyword">long</span> <span class="title">C</span><span class="params">(<span class="keyword">long</span> <span class="keyword">long</span> n,<span class="keyword">long</span> <span class="keyword">long</span> m,<span class="keyword">long</span> <span class="keyword">long</span> p)</span></span>{</span><br><span class="line"> <span class="keyword">if</span>(m>n)<span class="keyword">return</span> <span class="number">0</span>;</span><br><span class="line"> <span class="keyword">long</span> <span class="keyword">long</span> up=<span class="number">1</span>,down=<span class="number">1</span>;</span><br><span class="line"> <span class="keyword">for</span>(<span class="keyword">int</span> i=n-m+<span class="number">1</span>;i<=n;i++)up=up*i%p;</span><br><span class="line"> <span class="keyword">for</span>(<span class="keyword">int</span> i=<span class="number">1</span>;i<=m;i++)down=down*i%p;</span><br><span class="line"> <span class="keyword">return</span> up*inv(down,p)%p;</span><br><span class="line">}</span><br><span class="line"><span class="function"><span class="keyword">long</span> <span class="keyword">long</span> <span class="title">Lucas</span><span class="params">(<span class="keyword">long</span> <span class="keyword">long</span> n,<span class="keyword">long</span> <span class="keyword">long</span> m,<span class="keyword">long</span> <span class="keyword">long</span> p)</span></span>{</span><br><span class="line"> <span class="keyword">if</span>(m==<span class="number">0</span>)<span class="keyword">return</span> <span class="number">1</span>;</span><br><span class="line"> <span class="keyword">return</span>(Lucas(n/p,m/p,p)*C(n%p,m%p,p))%p;</span><br><span class="line">}</span><br></pre></td></tr></table></figure><p>这个算法适合 <span class="math inline">\(n,m\leq10^8,p\leq10^4\)</span>,速度较快,理解后难度也不高。</p><h2 id="拓展-lucas-定理">拓展 Lucas 定理</h2><p>适用于求 <span class="math inline">\(C_m^n\bmod p\)</span>,<span class="math inline">\(p\)</span> 不一定是质数。 ### 分解 将 <span class="math inline">\(p\)</span> 分解质因数: <span class="math display">\[p=q_1^{a_1}\cdot q_2^{a_2}\cdots q_r^{a_r}=\prod_{i-1}^rq_i^{a_i}\]</span></p><p>对于任意 <span class="math inline">\(i,j\)</span>,有 <span class="math inline">\(p_i^{a_i}\)</span> 与 <span class="math inline">\(p_j^{a_j}\)</span> 互质,所以可以构造 <span class="math inline">\(r\)</span> 个同余方程:</p><p><span class="math display">\[ \left\{ \begin{aligned} a_1&\equiv C_n^m\pmod {q_1^{a_1}}\\ a_2&\equiv C_n^m\pmod {q_2^{a_2}}\\ &\cdots\\ a_r&\equiv C_n^m\pmod {q_r^{a_r}} \end{aligned} \right. \]</span></p><p>我们发现,在求出 <span class="math inline">\(a_i\)</span> 后,就可以用中国剩余定理求解出 <span class="math inline">\(C_n^m\)</span>。</p><h3 id="转化">转化</h3><p>根据同余的定义,<span class="math inline">\(a_i=C_n^m\bmod q_i^{a_i}\)</span>,问题转化成,求 <span class="math inline">\(C_n^m\bmod\)</span></p></div><div><ul class="post-copyright"><li class="post-copyright-author"> <strong>Post author:</strong> Alex</li><li class="post-copyright-link"> <strong>Post link:</strong> <a href="https://schtonn.github.io/blog/posts/combination/" title="求组合数">https://schtonn.github.io/blog/posts/combination/</a></li><li class="post-copyright-license"> <strong>Copyright Notice:</strong> All articles in this blog are licensed under<a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="noopener" target="_blank"><i class="fa fa-fw fa-creative-commons"></i> BY-NC-SA</a> unless stating additionally.</li></ul></div><footer class="post-footer"><div class="post-tags"><a href="/blog/tags/math/" rel="tag"><i class="fa fa-tag"></i> math</a></div><div class="post-nav"><div class="post-nav-item"><a href="/blog/posts/ex-KMP/" rel="prev" title="拓展 KMP"><i class="fa fa-chevron-left"></i> 拓展 KMP</a></div><div class="post-nav-item"> <a href="/blog/posts/CRT/" rel="next" title="中国剩余定理">中国剩余定理<i class="fa fa-chevron-right"></i></a></div></div></footer></article></div><div class="comments" id="valine-comments"></div><script>
- window.addEventListener('tabs:register', () => {
- let { activeClass } = CONFIG.comments;
- if (CONFIG.comments.storage) {
- activeClass = localStorage.getItem('comments_active') || activeClass;
- }
- if (activeClass) {
- let activeTab = document.querySelector(`a[href="#comment-${activeClass}"]`);
- if (activeTab) {
- activeTab.click();
- }
- }
- });
- if (CONFIG.comments.storage) {
- window.addEventListener('tabs:click', event => {
- if (!event.target.matches('.tabs-comment .tab-content .tab-pane')) return;
- let commentClass = event.target.classList[1];
- localStorage.setItem('comments_active', commentClass);
- });
- }
- </script></div><div class="toggle sidebar-toggle"><span class="toggle-line toggle-line-first"></span><span class="toggle-line toggle-line-middle"></span><span class="toggle-line toggle-line-last"></span></div><aside class="sidebar"><div class="sidebar-inner"><ul class="sidebar-nav motion-element"><li class="sidebar-nav-toc"> Table of Contents</li><li class="sidebar-nav-overview"> Overview</li></ul><div class="post-toc-wrap sidebar-panel"><div class="post-toc motion-element"><ol class="nav"><li class="nav-item nav-level-2"><a class="nav-link" href="#前置知识"><span class="nav-number">1.</span> <span class="nav-text">前置知识</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#引入"><span class="nav-number">2.</span> <span class="nav-text">引入</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#朴素算法"><span class="nav-number">3.</span> <span class="nav-text">朴素算法</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#杨辉三角"><span class="nav-number">4.</span> <span class="nav-text">杨辉三角</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#lucas-定理"><span class="nav-number">5.</span> <span class="nav-text">Lucas 定理</span></a><ol class="nav-child"><li class="nav-item nav-level-3"><a class="nav-link" href="#证明"><span class="nav-number">5.1.</span> <span class="nav-text">证明</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#求解"><span class="nav-number">5.2.</span> <span class="nav-text">求解</span></a></li></ol></li><li class="nav-item nav-level-2"><a class="nav-link" href="#拓展-lucas-定理"><span class="nav-number">6.</span> <span class="nav-text">拓展 Lucas 定理</span></a><ol class="nav-child"><li class="nav-item nav-level-3"><a class="nav-link" href="#转化"><span class="nav-number">6.1.</span> <span class="nav-text">转化</span></a></li></ol></li></ol></div></div><div class="site-overview-wrap sidebar-panel"><div class="site-author motion-element" itemprop="author" itemscope itemtype="http://schema.org/Person"><p class="site-author-name" itemprop="name">Alex</p><div class="site-description" itemprop="description">blog</div></div><div class="site-state-wrap motion-element"><nav class="site-state"><div class="site-state-item site-state-posts"> <a href="/blog/archives"><span class="site-state-item-count">35</span> <span class="site-state-item-name">posts</span></a></div><div class="site-state-item site-state-tags"> <a href="/blog/tags/"><span class="site-state-item-count">8</span> <span class="site-state-item-name">tags</span></a></div></nav></div><div class="links-of-author motion-element"><span class="links-of-author-item"><a href="https://github.com/schtonn" title="GitHub → https://github.com/schtonn" rel="noopener" target="_blank"><i class="fa fa-fw fa-github"></i> GitHub</a></span><span class="links-of-author-item"><a href="mailto:schtonn@163.com" title="E-Mail → mailto:schtonn@163.com" rel="noopener" target="_blank"><i class="fa fa-fw fa-envelope"></i> E-Mail</a></span></div><div class="links-of-blogroll motion-element"><div class="links-of-blogroll-title"><i class="fa fa-fw fa-link"></i> Links</div><ul class="links-of-blogroll-list"><li class="links-of-blogroll-item"> <a href="https://yonghong.github.io/" title="https://yonghong.github.io" rel="noopener" target="_blank">Yonghong</a></li><li class="links-of-blogroll-item"> <a href="https://source.unsplash.com/random/1600x900" title="https://source.unsplash.com/random/1600x900" rel="noopener" target="_blank">Background</a></li></ul><iframe width="400" height="300" frameborder="0" src="https://cdn.abowman.com/widgets/treefrog/index.html?up_bodyColor=2d2d2d&up_pattern=0&up_patternColor=000000&up_footColor=2d2d2d&up_eyeColor=3a3a3a&up_bellySize=50&up_backgroundColor=222222&up_tongueColor=2b2d2d&up_flyColor=3a3a3a&up_releaseFly=0"></iframe></div></div></div></aside><div id="sidebar-dimmer"></div></div></main><footer class="footer"><div class="footer-inner"><div class="copyright"> © 2019 – <span itemprop="copyrightYear">2023</span><span class="with-love"><i class="fa fa-user"></i></span> <span class="author" itemprop="copyrightHolder">Alexander</span></div></div></footer></div><script src="/blog/lib/anime.min.js"></script><script src="//cdn.jsdelivr.net/npm/lozad@1/dist/lozad.min.js"></script><script src="/blog/lib/velocity/velocity.min.js"></script><script src="/blog/lib/velocity/velocity.ui.min.js"></script><script src="/blog/js/utils.js"></script><script src="/blog/js/motion.js"></script><script src="/blog/js/schemes/muse.js"></script><script src="/blog/js/next-boot.js"></script><script>!function(){var t=document.createElement("script"),e=window.location.protocol.split(":")[0];t.src="https"===e?"https://zz.bdstatic.com/linksubmit/push.js":"http://push.zhanzhang.baidu.com/push.js";var s=document.getElementsByTagName("script")[0];s.parentNode.insertBefore(t,s)}()</script><script>
- if (typeof MathJax === 'undefined') {
- window.MathJax = {
- loader: {
- load: ['[tex]/mhchem'],
- source: {
- '[tex]/amsCd': '[tex]/amscd',
- '[tex]/AMScd': '[tex]/amscd'
- }
- },
- tex: {
- inlineMath: {'[+]': [['$', '$']]},
- packages: {'[+]': ['mhchem']},
- tags: 'ams'
- },
- options: {
- renderActions: {
- findScript: [10, doc => {
- document.querySelectorAll('script[type^="math/tex"]').forEach(node => {
- const display = !!node.type.match(/; *mode=display/);
- const math = new doc.options.MathItem(node.textContent, doc.inputJax[0], display);
- const text = document.createTextNode('');
- node.parentNode.replaceChild(text, node);
- math.start = {node: text, delim: '', n: 0};
- math.end = {node: text, delim: '', n: 0};
- doc.math.push(math);
- });
- }, '', false],
- insertedScript: [200, () => {
- document.querySelectorAll('mjx-container').forEach(node => {
- let target = node.parentNode;
- if (target.nodeName.toLowerCase() === 'li') {
- target.parentNode.classList.add('has-jax');
- }
- });
- }, '', false]
- }
- }
- };
- (function () {
- var script = document.createElement('script');
- script.src = '//cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js';
- script.defer = true;
- document.head.appendChild(script);
- })();
- } else {
- MathJax.startup.document.state(0);
- MathJax.texReset();
- MathJax.typeset();
- }
- </script><script>
- NexT.utils.loadComments(document.querySelector('#valine-comments'), () => {
- NexT.utils.getScript('https://cdn.jsdelivr.net/npm/valine@1/dist/Valine.min.js', () => {
- var GUEST = ['nick', 'mail', 'link'];
- var guest = 'nick,mail';
- guest = guest.split(',').filter(item => {
- return GUEST.includes(item);
- });
- new Valine({
- el : '#valine-comments',
- verify : false,
- notify : false,
- appId : 'BmologYYnRqCv0SLHDeDdA17-gzGzoHsz',
- appKey : 'w9mVebFMdCmY6Nh9vfcBGaGt',
- placeholder: "Comment...",
- avatar : 'mp',
- meta : guest,
- pageSize : '10' || 10,
- visitor : false,
- lang : 'en' || 'zh-cn',
- path : location.pathname,
- recordIP : true,
- serverURLs : ''
- });
- }, window.Valine);
- });
- </script></body></html>
|