12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- <!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=2"><meta name="theme-color" content="#222"><meta name="generator" content="Hexo 4.2.0"><link rel="apple-touch-icon" sizes="180x180" href="/blog/blog/images/apple-touch-icon-next.png"><link rel="icon" type="image/png" sizes="32x32" href="/blog/blog/images/favicon-frog.png"><link rel="icon" type="image/png" sizes="16x16" href="/blog/blog/images/favicon-frog.png"><link rel="mask-icon" href="/blog/blog/images/logo.svg" color="#222"><link rel="stylesheet" href="/blog/css/main.css"><link rel="stylesheet" href="//fonts.googleapis.com/css?family=Comic Sans MS:300,300italic,400,400italic,700,700italic|Consolas:300,300italic,400,400italic,700,700italic&display=swap&subset=latin,latin-ext"><link rel="stylesheet" href="/blog/lib/font-awesome/css/font-awesome.min.css"><link rel="stylesheet" href="/blog/lib/pace/pace-theme-minimal.min.css"><script src="/blog/lib/pace/pace.min.js"></script><script id="hexo-configurations">var NexT=window.NexT||{},CONFIG={hostname:"schtonn.github.io",root:"/blog/",scheme:"Muse",version:"7.8.0",exturl:!1,sidebar:{position:"left",display:"post",padding:18,offset:12,onmobile:!1},copycode:{enable:!0,show_result:!0,style:"flat"},back2top:{enable:!0,sidebar:!1,scrollpercent:!0},bookmark:{enable:!1,color:"#222",save:"auto"},fancybox:!1,mediumzoom:!1,lazyload:!0,pangu:!1,comments:{style:"tabs",active:"valine",storage:!0,lazyload:!1,nav:null,activeClass:"valine"},algolia:{hits:{per_page:10},labels:{input_placeholder:"Search for Posts",hits_empty:"We didn't find any results for the search: ${query}",hits_stats:"${hits} results found in ${time} ms"}},localsearch:{enable:!1,trigger:"auto",top_n_per_article:1,unescape:!1,preload:!1},motion:{enable:!0,async:!1,transition:{post_block:"fadeIn",post_header:"slideDownIn",post_body:"slideDownIn",coll_header:"slideLeftIn",sidebar:"slideUpIn"}}}</script><meta name="description" content="前置知识
图论,动态规划,二进制基础知识。
引入
我们都知道欧拉回路,也就是经过每条边正好一遍的路径。
哈密尔顿回路和欧拉回路很像,但是需要经过每个点正好一遍。
欧拉回路有稳定的解法,然而哈密尔顿回路是 NPC 的,没有多项式时间解法。
我们使用动态规划来解决哈密尔顿回路问题。"><meta property="og:type" content="article"><meta property="og:title" content="哈密尔顿回路"><meta property="og:url" content="https://schtonn.github.io/blog/posts/hamilton/index.html"><meta property="og:site_name" content="schtonn"><meta property="og:description" content="前置知识
图论,动态规划,二进制基础知识。
引入
我们都知道欧拉回路,也就是经过每条边正好一遍的路径。
哈密尔顿回路和欧拉回路很像,但是需要经过每个点正好一遍。
欧拉回路有稳定的解法,然而哈密尔顿回路是 NPC 的,没有多项式时间解法。
我们使用动态规划来解决哈密尔顿回路问题。"><meta property="og:locale" content="en_US"><meta property="article:published_time" content="2020-06-14T14:03:13.000Z"><meta property="article:modified_time" content="2022-10-19T15:02:06.667Z"><meta property="article:author" content="Alex"><meta property="article:tag" content="graph"><meta property="article:tag" content="dp"><meta name="twitter:card" content="summary"><link rel="canonical" href="https://schtonn.github.io/blog/posts/hamilton/"><script id="page-configurations">CONFIG.page={sidebar:"",isHome:!1,isPost:!0,lang:"en"}</script><title>哈密尔顿回路 | schtonn</title><noscript><style>.sidebar-inner,.use-motion .brand,.use-motion .collection-header,.use-motion .comments,.use-motion .menu-item,.use-motion .pagination,.use-motion .post-block,.use-motion .post-body,.use-motion .post-header{opacity:initial}.use-motion .site-subtitle,.use-motion .site-title{opacity:initial;top:initial}.use-motion .logo-line-before i{left:initial}.use-motion .logo-line-after i{right:initial}</style></noscript></head><body itemscope itemtype="http://schema.org/WebPage"><div class="container use-motion"><div class="headband"></div><header class="header" itemscope itemtype="http://schema.org/WPHeader"><div class="header-inner"><div class="site-brand-container"><div class="site-nav-toggle"><div class="toggle" aria-label="Toggle navigation bar"><span class="toggle-line toggle-line-first"></span><span class="toggle-line toggle-line-middle"></span><span class="toggle-line toggle-line-last"></span></div></div><div class="site-meta"><a href="/blog/" class="brand" rel="start"><span class="logo-line-before"><i></i></span><h1 class="site-title">schtonn</h1><span class="logo-line-after"><i></i></span></a><p class="site-subtitle" itemprop="description">schtonn</p></div><div class="site-nav-right"><div class="toggle popup-trigger"></div></div></div><nav class="site-nav"><ul id="menu" class="menu"><li class="menu-item menu-item-home"><a href="/blog/" rel="section"><i class="fa fa-fw fa-home"></i> Home</a></li><li class="menu-item menu-item-tags"><a href="/blog/tags/" rel="section"><i class="fa fa-fw fa-tags"></i> Tags</a></li><li class="menu-item menu-item-archives"><a href="/blog/archives/" rel="section"><i class="fa fa-fw fa-archive"></i> Archives</a></li><li class="menu-item menu-item-games"><a href="/blog/games/" rel="section"><i class="fa fa-fw fa-gamepad"></i> Games</a></li></ul></nav></div></header><div class="back-to-top"><i class="fa fa-arrow-up"></i> <span>0%</span></div><main class="main"><div class="main-inner"><div class="content-wrap"><div class="content post posts-expand"><article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en"><link itemprop="mainEntityOfPage" href="https://schtonn.github.io/blog/posts/hamilton/"><span hidden itemprop="author" itemscope itemtype="http://schema.org/Person"><meta itemprop="image" content="/blog/images/avatar.gif"><meta itemprop="name" content="Alex"><meta itemprop="description" content="blog"></span><script type="text/javascript" src="/blog/js/md5.js"></script><script></script><script>document.oncopy=function(e){window.event&&(e=window.event);try{var t=e.srcElement;return"INPUT"==t.tagName&&"text"==t.type.toLowerCase()||"TEXTAREA"==t.tagName}catch(e){return!1}}</script><span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization"><meta itemprop="name" content="schtonn"></span><header class="post-header"><h1 class="post-title" itemprop="name headline"> 哈密尔顿回路</h1><div class="post-meta"><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-o"></i></span> <span class="post-meta-item-text">Posted on</span> <time title="Created: 2020-Jun-14 22:03:13" itemprop="dateCreated datePublished" datetime="2020-06-14T22:03:13+08:00">2020-Jun-14</time></span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-check-o"></i></span> <span class="post-meta-item-text">Edited on</span> <time title="Modified: 2022-Oct-19 23:02:06" itemprop="dateModified" datetime="2022-10-19T23:02:06+08:00">2022-Oct-19</time></span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-comment-o"></i></span> <span class="post-meta-item-text">Valine:</span><a title="valine" href="/blog/posts/hamilton/#valine-comments" itemprop="discussionUrl"><span class="post-comments-count valine-comment-count" data-xid="/blog/posts/hamilton/" itemprop="commentCount"></span></a></span></div></header><div class="post-body" itemprop="articleBody"><h2 id="前置知识">前置知识</h2><p>图论,动态规划,二进制基础知识。</p><h2 id="引入">引入</h2><p>我们都知道欧拉回路,也就是经过每条边正好一遍的路径。</p><p>哈密尔顿回路和欧拉回路很像,但是需要经过每个点正好一遍。</p><p>欧拉回路有稳定的解法,然而哈密尔顿回路是 <code>NPC</code> 的,没有多项式时间解法。</p><p>我们使用动态规划来解决哈密尔顿回路问题。</p><a id="more"></a><h2 id="思路">思路</h2><p>想要解决回路的问题,首先要解决路径的问题。若有图 <span class="math inline">\(G(n,m)\)</span>,需要找出图中的一条哈密尔顿路径。</p><p>对于一条长度大于一的哈密尔顿路径,它一定是由一个更短的路径和一条连通边走过来的,所以我们定义数组 <code>F</code>,<code>F[{S}][p]</code> 表示经过了集合 <span class="math inline">\(S\)</span> 中的所有点,最后到达点 <code>t</code> 有没有路径。</p><p>如果 <code>F[{s}][p]</code> 为真,那么一定有 <code>F[{s}-p][q]</code> 为真且 <span class="math inline">\(q\rightarrow p\)</span> 有边,也就是有一个没有 <code>p</code> 的成立集合,并且最终能加入 <code>p</code>。</p><p>初始值设为,对于图中每一个点 <code>i</code>,<code>F[{i}][i]=true</code>。最终寻找:<span class="math inline">\(\vee^i_{i\in n} F[\{n\}][i]\)</span>(经过所有点,最终到达任意一点)。</p><p>此时我们就得到了状态转移方程:</p><p><span class="math display">\[F[\{S\}][p](p\in S)=\sum^q_{q\in S}F[\{S\}-p][q]\cdot Edge[q][p]\]</span></p><p>通过枚举 <code>S</code>,<code>q</code> 和 <code>p</code>,就可以求出哈密尔顿路径了。</p><h2 id="状态压缩">状态压缩</h2><p>此时,聪明的小朋友就会问了:你一个数组的下标怎么表示集合?</p><p>这时就要请出我们的大法师:状态压缩了。我们把本应是集合的数据压缩成一个下标。</p><p>运用二进制,把在集合中的点标记为一,不在集合中的标记为零,这样集合就转成下标了。</p><p>比如一共有三个点,其中点一,点二在集合中,那么我们就用 <span class="math inline">\((011)_2\)</span> 来表示。简直聪明至极!</p><p>作为一个n个点的图,<code>S</code> 可以以十进制顺序枚举,从 <span class="math inline">\((00\cdots 0)_2\)</span> 到 <span class="math inline">\((11\cdots 1)_2\)</span>,这样确保了前置条件是完整的。内里嵌套两层循环枚举 <code>q</code> 和 <code>p</code>。</p><p>作为二进制,当然要有专门用在二进制上的操作。</p><h3 id="按位操作">按位操作</h3><p>有几种不同的按位二进制操作:</p><ol type="1"><li><p>按位与</p><p>符号:<code>&</code></p><p>两个都是一就得一,否则得零。</p> <span class="math inline">\((01011101)_2\&(10101011)_2=(00001001)_2\)</span></li><li><p>按位或</p><p>符号:<code>|</code></p><p>只要有一就得一,否则得零。</p> <span class="math inline">\((01000101)_2|(10001011)_2=(11001111)_2\)</span></li><li><p>按位异或</p><p>符号:<code>^</code></p><p>两个不同就得一,否则得零。</p><p>注意和幂区分。</p><p>(<span class="math inline">\(\LaTeX\)</span>中打不出来这个符号,用另一个符号代替。)</p> <span class="math inline">\((11011010)_2\oplus(10101010)_2=(01110000)_2\)</span></li><li><p>左移,右移</p><p>符号:<code><<</code>和<code>>></code></p><p>顾名思义,就是把二进制位移动。边界用0代替。</p><p><span class="math inline">\((10101010)_2<<3=(01010000)_2\)</span></p></li></ol><h3 id="高级操作">高级操作</h3><ol type="1"><li><p>如果我们要判断集合S中第i位是不是1,那就用这个:<code>S&(1<<(i-1))</code>。</p></li><li><p>将集合S中已知为1的第i位变为0:<code>S^(1<<(i-1))</code>。</p></li></ol><h3 id="核心代码">核心代码</h3><figure class="highlight cpp"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br></pre></td><td class="code"><pre><span class="line"><span class="keyword">for</span>(<span class="keyword">int</span> s=<span class="number">1</span>;s<(<span class="number">1</span><<n);++s){</span><br><span class="line"> <span class="keyword">for</span>(<span class="keyword">int</span> p=<span class="number">1</span>;p<=n;++p){</span><br><span class="line"> <span class="keyword">if</span>(s&(<span class="number">1</span><<(p<span class="number">-1</span>))==<span class="number">0</span>)<span class="keyword">continue</span>;<span class="comment">//判断p是否为S中元素</span></span><br><span class="line"> <span class="keyword">for</span>(<span class="keyword">int</span> q=<span class="number">1</span>;q<=n;++q){</span><br><span class="line"> <span class="keyword">if</span>(s&(<span class="number">1</span><<(q<span class="number">-1</span>))==<span class="number">0</span>)<span class="keyword">continue</span>;<span class="comment">//判断q是否为S中元素</span></span><br><span class="line"> <span class="keyword">if</span>(!e[q][p])<span class="keyword">continue</span>;<span class="comment">//判断有没有q到p的边</span></span><br><span class="line"> <span class="keyword">if</span>(dp[s^(<span class="number">1</span><<(p<span class="number">-1</span>))][q]){<span class="comment">//判断dp[{s}-p][q]是否为真</span></span><br><span class="line"> dp[s][p]=<span class="literal">true</span>;</span><br><span class="line"> }</span><br><span class="line"> }</span><br><span class="line"> }</span><br><span class="line">}</span><br></pre></td></tr></table></figure><h2 id="扩展">扩展</h2><h3 id="记录">记录</h3><p>有些题目要求输出哈密尔顿路径。其实并不难,根本上只需要加上这一句:<code>g[s][p]=q;</code>,通过g数组记录路径。</p><h3 id="回路">回路</h3><p>对于哈密尔顿回路,有一个方法是让路径只允许从点1开始,最后看能不能走回点1,也就是初始值设为 <code>F[{1}][1]=true</code>,最终判定 <span class="math inline">\(F[\{n\}][i]\)</span>。</p><h3 id="代码">代码</h3><p>输出回路的完整代码</p><figure class="highlight cpp"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br><span class="line">26</span><br><span class="line">27</span><br><span class="line">28</span><br><span class="line">29</span><br><span class="line">30</span><br><span class="line">31</span><br><span class="line">32</span><br><span class="line">33</span><br><span class="line">34</span><br><span class="line">35</span><br><span class="line">36</span><br><span class="line">37</span><br><span class="line">38</span><br><span class="line">39</span><br><span class="line">40</span><br><span class="line">41</span><br><span class="line">42</span><br><span class="line">43</span><br><span class="line">44</span><br><span class="line">45</span><br><span class="line">46</span><br><span class="line">47</span><br><span class="line">48</span><br><span class="line">49</span><br><span class="line">50</span><br><span class="line">51</span><br><span class="line">52</span><br><span class="line">53</span><br><span class="line">54</span><br></pre></td><td class="code"><pre><span class="line"><span class="meta">#<span class="meta-keyword">include</span> <span class="meta-string">"bits/stdc++.h"</span></span></span><br><span class="line"><span class="keyword">using</span> <span class="keyword">namespace</span> <span class="built_in">std</span>;</span><br><span class="line"><span class="keyword">const</span> <span class="keyword">int</span> N=<span class="number">1</span><<<span class="number">20</span>;</span><br><span class="line"><span class="keyword">int</span> n,m,e[<span class="number">25</span>][<span class="number">25</span>];</span><br><span class="line"><span class="keyword">bool</span> dp[N][<span class="number">25</span>];<span class="comment">//dp[i][j]表示状态为i,最后到达j点有没有路径</span></span><br><span class="line"><span class="keyword">int</span> g[N][<span class="number">25</span>];</span><br><span class="line"><span class="function"><span class="keyword">int</span> <span class="title">main</span><span class="params">()</span></span>{</span><br><span class="line"> <span class="built_in">cin</span>>>n>>m;</span><br><span class="line"> <span class="keyword">for</span>(<span class="keyword">int</span> i=<span class="number">1</span>;i<=m;i++){</span><br><span class="line"> <span class="keyword">int</span> u,v;</span><br><span class="line"> <span class="built_in">cin</span>>>u>>v;</span><br><span class="line"> e[u][v]=<span class="literal">true</span>;</span><br><span class="line"> }</span><br><span class="line"> dp[<span class="number">1</span>][<span class="number">1</span>]=<span class="literal">true</span>;</span><br><span class="line"> <span class="keyword">for</span>(<span class="keyword">int</span> s=<span class="number">1</span>;s<(<span class="number">1</span><<n);++s){</span><br><span class="line"> <span class="keyword">for</span>(<span class="keyword">int</span> p=<span class="number">1</span>;p<=n;++p){</span><br><span class="line"> <span class="keyword">if</span>(s&(<span class="number">1</span><<(p<span class="number">-1</span>))==<span class="number">0</span>)<span class="keyword">continue</span>;<span class="comment">//判断p是否为S中元素</span></span><br><span class="line"> <span class="keyword">for</span>(<span class="keyword">int</span> q=<span class="number">1</span>;q<=n;++q){</span><br><span class="line"> <span class="keyword">if</span>(s&(<span class="number">1</span><<(q<span class="number">-1</span>))==<span class="number">0</span>)<span class="keyword">continue</span>;<span class="comment">//判断q是否为S中元素</span></span><br><span class="line"> <span class="keyword">if</span>(!e[q][p])<span class="keyword">continue</span>;<span class="comment">//判断有没有q到p的边</span></span><br><span class="line"> <span class="keyword">if</span>(dp[s^(<span class="number">1</span><<(p<span class="number">-1</span>))][q]){<span class="comment">//判断dp[{s}-p][q]是否为真</span></span><br><span class="line"> dp[s][p]=<span class="literal">true</span>;</span><br><span class="line"> g[s][p]=q;</span><br><span class="line"> }</span><br><span class="line"> }</span><br><span class="line"> }</span><br><span class="line"> }</span><br><span class="line"> <span class="keyword">int</span> s=(<span class="number">1</span><<n)<span class="number">-1</span>;</span><br><span class="line"> <span class="keyword">bool</span> flag=<span class="number">0</span>;</span><br><span class="line"> <span class="built_in">stack</span><<span class="keyword">int</span>>output;</span><br><span class="line"> <span class="keyword">for</span>(<span class="keyword">int</span> i=<span class="number">1</span>;i<=n;i++){</span><br><span class="line"> <span class="keyword">if</span>(dp[s][i]&&e[i][<span class="number">1</span>]){</span><br><span class="line"> <span class="keyword">int</span> p=i;</span><br><span class="line"> output.push(p);</span><br><span class="line"> <span class="keyword">do</span>{</span><br><span class="line"> output.push(g[s][p]);</span><br><span class="line"> <span class="keyword">int</span> t=p;</span><br><span class="line"> p=g[s][p];</span><br><span class="line"> s-=(<span class="number">1</span><<(t<span class="number">-1</span>));</span><br><span class="line"> }<span class="keyword">while</span>(s!=<span class="number">1</span>);</span><br><span class="line"> flag=<span class="number">1</span>;</span><br><span class="line"> <span class="keyword">break</span>;</span><br><span class="line"> }</span><br><span class="line"> }</span><br><span class="line"> <span class="keyword">if</span>(!flag){</span><br><span class="line"> <span class="built_in">cout</span><<<span class="string">"No Answer"</span><<<span class="built_in">endl</span>;</span><br><span class="line"> <span class="keyword">return</span> <span class="number">0</span>;</span><br><span class="line"> }</span><br><span class="line"> <span class="keyword">while</span>(!output.empty()){</span><br><span class="line"> <span class="built_in">cout</span><<output.top()<<<span class="string">' '</span>;</span><br><span class="line"> output.pop();</span><br><span class="line"> }</span><br><span class="line"> <span class="keyword">return</span> <span class="number">0</span>;</span><br><span class="line">}</span><br></pre></td></tr></table></figure><p></p></div><div><ul class="post-copyright"><li class="post-copyright-author"> <strong>Post author:</strong> Alex</li><li class="post-copyright-link"> <strong>Post link:</strong> <a href="https://schtonn.github.io/blog/posts/hamilton/" title="哈密尔顿回路">https://schtonn.github.io/blog/posts/hamilton/</a></li><li class="post-copyright-license"> <strong>Copyright Notice:</strong> All articles in this blog are licensed under<a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="noopener" target="_blank"><i class="fa fa-fw fa-creative-commons"></i> BY-NC-SA</a> unless stating additionally.</li></ul></div><footer class="post-footer"><div class="post-tags"><a href="/blog/tags/graph/" rel="tag"><i class="fa fa-tag"></i> graph</a><a href="/blog/tags/dp/" rel="tag"><i class="fa fa-tag"></i> dp</a></div><div class="post-nav"><div class="post-nav-item"><a href="/blog/posts/matrix-pow/" rel="prev" title="矩阵快速幂简述"><i class="fa fa-chevron-left"></i> 矩阵快速幂简述</a></div><div class="post-nav-item"> <a href="/blog/posts/manacher/" rel="next" title="Manacher">Manacher<i class="fa fa-chevron-right"></i></a></div></div></footer></article></div><div class="comments" id="valine-comments"></div><script>
- window.addEventListener('tabs:register', () => {
- let { activeClass } = CONFIG.comments;
- if (CONFIG.comments.storage) {
- activeClass = localStorage.getItem('comments_active') || activeClass;
- }
- if (activeClass) {
- let activeTab = document.querySelector(`a[href="#comment-${activeClass}"]`);
- if (activeTab) {
- activeTab.click();
- }
- }
- });
- if (CONFIG.comments.storage) {
- window.addEventListener('tabs:click', event => {
- if (!event.target.matches('.tabs-comment .tab-content .tab-pane')) return;
- let commentClass = event.target.classList[1];
- localStorage.setItem('comments_active', commentClass);
- });
- }
- </script></div><div class="toggle sidebar-toggle"><span class="toggle-line toggle-line-first"></span><span class="toggle-line toggle-line-middle"></span><span class="toggle-line toggle-line-last"></span></div><aside class="sidebar"><div class="sidebar-inner"><ul class="sidebar-nav motion-element"><li class="sidebar-nav-toc"> Table of Contents</li><li class="sidebar-nav-overview"> Overview</li></ul><div class="post-toc-wrap sidebar-panel"><div class="post-toc motion-element"><ol class="nav"><li class="nav-item nav-level-2"><a class="nav-link" href="#前置知识"><span class="nav-number">1.</span> <span class="nav-text">前置知识</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#引入"><span class="nav-number">2.</span> <span class="nav-text">引入</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#思路"><span class="nav-number">3.</span> <span class="nav-text">思路</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#状态压缩"><span class="nav-number">4.</span> <span class="nav-text">状态压缩</span></a><ol class="nav-child"><li class="nav-item nav-level-3"><a class="nav-link" href="#按位操作"><span class="nav-number">4.1.</span> <span class="nav-text">按位操作</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#高级操作"><span class="nav-number">4.2.</span> <span class="nav-text">高级操作</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#核心代码"><span class="nav-number">4.3.</span> <span class="nav-text">核心代码</span></a></li></ol></li><li class="nav-item nav-level-2"><a class="nav-link" href="#扩展"><span class="nav-number">5.</span> <span class="nav-text">扩展</span></a><ol class="nav-child"><li class="nav-item nav-level-3"><a class="nav-link" href="#记录"><span class="nav-number">5.1.</span> <span class="nav-text">记录</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#回路"><span class="nav-number">5.2.</span> <span class="nav-text">回路</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#代码"><span class="nav-number">5.3.</span> <span class="nav-text">代码</span></a></li></ol></li></ol></div></div><div class="site-overview-wrap sidebar-panel"><div class="site-author motion-element" itemprop="author" itemscope itemtype="http://schema.org/Person"><p class="site-author-name" itemprop="name">Alex</p><div class="site-description" itemprop="description">blog</div></div><div class="site-state-wrap motion-element"><nav class="site-state"><div class="site-state-item site-state-posts"> <a href="/blog/archives"><span class="site-state-item-count">35</span> <span class="site-state-item-name">posts</span></a></div><div class="site-state-item site-state-tags"> <a href="/blog/tags/"><span class="site-state-item-count">8</span> <span class="site-state-item-name">tags</span></a></div></nav></div><div class="links-of-author motion-element"><span class="links-of-author-item"><a href="https://github.com/schtonn" title="GitHub → https://github.com/schtonn" rel="noopener" target="_blank"><i class="fa fa-fw fa-github"></i> GitHub</a></span><span class="links-of-author-item"><a href="mailto:schtonn@163.com" title="E-Mail → mailto:schtonn@163.com" rel="noopener" target="_blank"><i class="fa fa-fw fa-envelope"></i> E-Mail</a></span></div><div class="links-of-blogroll motion-element"><div class="links-of-blogroll-title"><i class="fa fa-fw fa-link"></i> Links</div><ul class="links-of-blogroll-list"><li class="links-of-blogroll-item"> <a href="https://yonghong.github.io/" title="https://yonghong.github.io" rel="noopener" target="_blank">Yonghong</a></li><li class="links-of-blogroll-item"> <a href="https://source.unsplash.com/random/1600x900" title="https://source.unsplash.com/random/1600x900" rel="noopener" target="_blank">Background</a></li></ul><iframe width="400" height="300" frameborder="0" src="https://cdn.abowman.com/widgets/treefrog/index.html?up_bodyColor=2d2d2d&up_pattern=0&up_patternColor=000000&up_footColor=2d2d2d&up_eyeColor=3a3a3a&up_bellySize=50&up_backgroundColor=222222&up_tongueColor=2b2d2d&up_flyColor=3a3a3a&up_releaseFly=0"></iframe></div></div></div></aside><div id="sidebar-dimmer"></div></div></main><footer class="footer"><div class="footer-inner"><div class="copyright"> © 2019 – <span itemprop="copyrightYear">2023</span><span class="with-love"><i class="fa fa-user"></i></span> <span class="author" itemprop="copyrightHolder">Alexander</span></div></div></footer></div><script src="/blog/lib/anime.min.js"></script><script src="//cdn.jsdelivr.net/npm/lozad@1/dist/lozad.min.js"></script><script src="/blog/lib/velocity/velocity.min.js"></script><script src="/blog/lib/velocity/velocity.ui.min.js"></script><script src="/blog/js/utils.js"></script><script src="/blog/js/motion.js"></script><script src="/blog/js/schemes/muse.js"></script><script src="/blog/js/next-boot.js"></script><script>!function(){var t=document.createElement("script"),e=window.location.protocol.split(":")[0];t.src="https"===e?"https://zz.bdstatic.com/linksubmit/push.js":"http://push.zhanzhang.baidu.com/push.js";var s=document.getElementsByTagName("script")[0];s.parentNode.insertBefore(t,s)}()</script><script>
- if (typeof MathJax === 'undefined') {
- window.MathJax = {
- loader: {
- load: ['[tex]/mhchem'],
- source: {
- '[tex]/amsCd': '[tex]/amscd',
- '[tex]/AMScd': '[tex]/amscd'
- }
- },
- tex: {
- inlineMath: {'[+]': [['$', '$']]},
- packages: {'[+]': ['mhchem']},
- tags: 'ams'
- },
- options: {
- renderActions: {
- findScript: [10, doc => {
- document.querySelectorAll('script[type^="math/tex"]').forEach(node => {
- const display = !!node.type.match(/; *mode=display/);
- const math = new doc.options.MathItem(node.textContent, doc.inputJax[0], display);
- const text = document.createTextNode('');
- node.parentNode.replaceChild(text, node);
- math.start = {node: text, delim: '', n: 0};
- math.end = {node: text, delim: '', n: 0};
- doc.math.push(math);
- });
- }, '', false],
- insertedScript: [200, () => {
- document.querySelectorAll('mjx-container').forEach(node => {
- let target = node.parentNode;
- if (target.nodeName.toLowerCase() === 'li') {
- target.parentNode.classList.add('has-jax');
- }
- });
- }, '', false]
- }
- }
- };
- (function () {
- var script = document.createElement('script');
- script.src = '//cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js';
- script.defer = true;
- document.head.appendChild(script);
- })();
- } else {
- MathJax.startup.document.state(0);
- MathJax.texReset();
- MathJax.typeset();
- }
- </script><script>
- NexT.utils.loadComments(document.querySelector('#valine-comments'), () => {
- NexT.utils.getScript('https://cdn.jsdelivr.net/npm/valine@1/dist/Valine.min.js', () => {
- var GUEST = ['nick', 'mail', 'link'];
- var guest = 'nick,mail';
- guest = guest.split(',').filter(item => {
- return GUEST.includes(item);
- });
- new Valine({
- el : '#valine-comments',
- verify : false,
- notify : false,
- appId : 'BmologYYnRqCv0SLHDeDdA17-gzGzoHsz',
- appKey : 'w9mVebFMdCmY6Nh9vfcBGaGt',
- placeholder: "Comment...",
- avatar : 'mp',
- meta : guest,
- pageSize : '10' || 10,
- visitor : false,
- lang : 'en' || 'zh-cn',
- path : location.pathname,
- recordIP : true,
- serverURLs : ''
- });
- }, window.Valine);
- });
- </script></body></html>
|