(\(\text{C}^m_n\) 代表从 \(n\) 个不同物品里面选 \(m\) 个,有多少种选法)
(\(\sum\limits_{i=0}^n\text{f}(i)\) 表示从 \(0\) 到 \(n\) 对 \(\text{f}(i)\) 求和)
(约定 \(\text{C}^0_n=1\))
引理:n 次方差公式 \[(m+1)^{k+1}-m^{k+1}=\sum_{i=0}^{k}\text{C}^i_{k+1}m^i\]
证:
\[\sum^n_{m=1}(m+1)^{k+1}-m^{k+1}=(n+1)^{k+1}-1^{k+1}\] \[=\sum_{i=0}^k\text{C}^i_{k+1}\left(\sum^n_{m=1}m^i\right)\] \[=\text{C}^k_{k+1}\left(\sum^n_{m=1}m^k\right)+\sum^{k-1}_{i=0}\text{C}^i_{k+1}\left(\sum^n_{m=1}m^i\right)\]
因此有 \[\sum^n_{m=1}m^k=\dfrac{1}{\text{C}^k_{k+1}}\left[(n+1)^{k+1}-1-\sum^{k-1}_{i=0}\text{C}^i_{k+1}\left(\sum^n_{m=1}m^i\right)\right]\]