|
@@ -204,23 +204,26 @@
|
|
|
<div class="post-body" itemprop="articleBody">
|
|
|
|
|
|
|
|
|
- <h3 id="薄弱项">薄弱项</h3>
|
|
|
-<ol type="1">
|
|
|
+ <h3 id="薄弱项"><a class="markdownIt-Anchor" href="#薄弱项"></a> 薄弱项</h3>
|
|
|
+<ol>
|
|
|
<li><strong>作文</strong>
|
|
|
-<ol type="1">
|
|
|
+<ol>
|
|
|
<li>写日记
|
|
|
<ul>
|
|
|
<li>每天固定 9:00-9:30</li>
|
|
|
<li>内容不必精美</li>
|
|
|
<li>一周写五天,两天机动</li>
|
|
|
-</ul></li>
|
|
|
+</ul>
|
|
|
+</li>
|
|
|
<li>读书
|
|
|
<ul>
|
|
|
<li>作文辅导书为主 <code>作文大全等</code></li>
|
|
|
<li>其他书籍为辅</li>
|
|
|
-</ul></li>
|
|
|
+</ul>
|
|
|
+</li>
|
|
|
<li>录音</li>
|
|
|
-</ol></li>
|
|
|
+</ol>
|
|
|
+</li>
|
|
|
</ol>
|
|
|
<!--noindex-->
|
|
|
<div class="post-button">
|
|
@@ -295,10 +298,12 @@
|
|
|
<div class="post-body" itemprop="articleBody">
|
|
|
|
|
|
|
|
|
- <h3 id="前置知识">前置知识</h3>
|
|
|
+ <h3 id="前置知识"><a class="markdownIt-Anchor" href="#前置知识"></a> 前置知识</h3>
|
|
|
<p>数组,结构体,二叉树</p>
|
|
|
-<h3 id="引入">引入</h3>
|
|
|
-<p>有时候我们会遇到一些大规模的区间查找和区间修改问题,比如让你维护一个 <span class="math inline">\(10^5\)</span> 长度的数列,要求操作有区间求和、区间加(区间每个数加上一个值),让你在一秒内完成 <span class="math inline">\(10^5\)</span> 次操作。 暴力是肯定不行的,数据范围太大,会超时。 所以我们就有一种专门解决大范围区间修改查询的数据结构:线段树。</p>
|
|
|
+<h3 id="引入"><a class="markdownIt-Anchor" href="#引入"></a> 引入</h3>
|
|
|
+<p>有时候我们会遇到一些大规模的区间查找和区间修改问题,比如让你维护一个 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mn>1</mn><msup><mn>0</mn><mn>5</mn></msup></mrow><annotation encoding="application/x-tex">10^5</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">5</span></span></span></span></span></span></span></span></span></span></span> 长度的数列,要求操作有区间求和、区间加(区间每个数加上一个值),让你在一秒内完成 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mn>1</mn><msup><mn>0</mn><mn>5</mn></msup></mrow><annotation encoding="application/x-tex">10^5</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">5</span></span></span></span></span></span></span></span></span></span></span> 次操作。<br />
|
|
|
+暴力是肯定不行的,数据范围太大,会超时。<br />
|
|
|
+所以我们就有一种专门解决大范围区间修改查询的数据结构:线段树。</p>
|
|
|
<!--noindex-->
|
|
|
<div class="post-button">
|
|
|
<a class="btn" href="/2020/03/02/segment-tree/#more" rel="contents">
|
|
@@ -372,7 +377,31 @@
|
|
|
<div class="post-body" itemprop="articleBody">
|
|
|
|
|
|
|
|
|
- <p>引自:《信息学奥赛之-数学一本通》 揍是这样: <span class="math display">\[\operatorname{F}(n)=\dfrac{\sqrt{5}}{5}\cdot\left[\left(1+\sqrt{5}\right)^n-\left(1-\sqrt{5}\right)^n\right]\]</span> 代码揍这么简单: <figure class="highlight cpp"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br></pre></td><td class="code"><pre><span class="line"><span class="function"><span class="keyword">int</span> <span class="title">ferbo</span><span class="params">(<span class="keyword">int</span> n)</span></span>{</span><br><span class="line"> <span class="keyword">return</span> (<span class="built_in">sqrt</span>(<span class="number">5</span>)/<span class="number">5</span>)*(<span class="built_in">pow</span>((<span class="number">1</span>+<span class="built_in">sqrt</span>(<span class="number">5</span>))/<span class="number">2</span>,n)-<span class="built_in">pow</span>((<span class="number">1</span>-<span class="built_in">sqrt</span>(<span class="number">5</span>))/<span class="number">2</span>,n));</span><br><span class="line">}</span><br></pre></td></tr></table></figure> 要是再加个快速幂就更棒了(够快了,懒得写)</p>
|
|
|
+ <p>引自:《信息学奥赛之-数学一本通》<br />
|
|
|
+揍是这样:</p>
|
|
|
+<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi mathvariant="normal">F</mi><mo></mo><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><msqrt><mn>5</mn></msqrt><mn>5</mn></mfrac><mo>⋅</mo><mrow><mo fence="true">[</mo><msup><mrow><mo fence="true">(</mo><mn>1</mn><mo>+</mo><msqrt><mn>5</mn></msqrt><mo fence="true">)</mo></mrow><mi>n</mi></msup><mo>−</mo><msup><mrow><mo fence="true">(</mo><mn>1</mn><mo>−</mo><msqrt><mn>5</mn></msqrt><mo fence="true">)</mo></mrow><mi>n</mi></msup><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">\operatorname{F}(n)=\dfrac{\sqrt{5}}{5}\cdot\left[\left(1+\sqrt{5}\right)^n-\left(1-\sqrt{5}\right)^n\right]
|
|
|
+</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop"><span class="mord mathrm">F</span></span><span class="mopen">(</span><span class="mord mathdefault">n</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.27022em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5842200000000002em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">5</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.90722em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">5</span></span></span><span style="top:-2.86722em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,
|
|
|
+-10,-9.5,-14c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54c44.2,-33.3,65.8,
|
|
|
+-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,
|
|
|
+35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429c69,-144,104.5,-217.7,106.5,
|
|
|
+-221c5.3,-9.3,12,-14,20,-14H400000v40H845.2724s-225.272,467,-225.272,467
|
|
|
+s-235,486,-235,486c-2.7,4.7,-9,7,-19,7c-6,0,-10,-1,-12,-3s-194,-422,-194,-422
|
|
|
+s-65,47,-65,47z M834 80H400000v40H845z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.13278em;"><span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.854312em;vertical-align:-0.65002em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">[</span></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.956095em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">5</span></span></span><span style="top:-2.916095em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,
|
|
|
+-10,-9.5,-14c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54c44.2,-33.3,65.8,
|
|
|
+-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,
|
|
|
+35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429c69,-144,104.5,-217.7,106.5,
|
|
|
+-221c5.3,-9.3,12,-14,20,-14H400000v40H845.2724s-225.272,467,-225.272,467
|
|
|
+s-235,486,-235,486c-2.7,4.7,-9,7,-19,7c-6,0,-10,-1,-12,-3s-194,-422,-194,-422
|
|
|
+s-65,47,-65,47z M834 80H400000v40H845z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.08390500000000001em;"><span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.204292em;"><span style="top:-3.6029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.956095em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">5</span></span></span><span style="top:-2.916095em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,
|
|
|
+-10,-9.5,-14c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54c44.2,-33.3,65.8,
|
|
|
+-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,
|
|
|
+35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429c69,-144,104.5,-217.7,106.5,
|
|
|
+-221c5.3,-9.3,12,-14,20,-14H400000v40H845.2724s-225.272,467,-225.272,467
|
|
|
+s-235,486,-235,486c-2.7,4.7,-9,7,-19,7c-6,0,-10,-1,-12,-3s-194,-422,-194,-422
|
|
|
+s-65,47,-65,47z M834 80H400000v40H845z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.08390500000000001em;"><span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.204292em;"><span style="top:-3.6029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">]</span></span></span></span></span></span></span></p>
|
|
|
+<p>代码揍这么简单:</p>
|
|
|
+<figure class="highlight cpp"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br></pre></td><td class="code"><pre><span class="line"><span class="function"><span class="keyword">int</span> <span class="title">ferbo</span><span class="params">(<span class="keyword">int</span> n)</span></span>{</span><br><span class="line"> <span class="keyword">return</span> (<span class="built_in">sqrt</span>(<span class="number">5</span>)/<span class="number">5</span>)*(<span class="built_in">pow</span>((<span class="number">1</span>+<span class="built_in">sqrt</span>(<span class="number">5</span>))/<span class="number">2</span>,n)-<span class="built_in">pow</span>((<span class="number">1</span>-<span class="built_in">sqrt</span>(<span class="number">5</span>))/<span class="number">2</span>,n));</span><br><span class="line">}</span><br></pre></td></tr></table></figure>
|
|
|
+<p>要是再加个快速幂就更棒了(够快了,懒得写)</p>
|
|
|
|
|
|
|
|
|
</div>
|
|
@@ -439,10 +468,12 @@
|
|
|
<div class="post-body" itemprop="articleBody">
|
|
|
|
|
|
|
|
|
- <h3 id="前置知识">前置知识</h3>
|
|
|
-<p>存图方式(<a href="http://baidu.physton.com/?q=邻接表" target="_blank" rel="noopener" title="简单">邻接表</a>,<a href="http://baidu.physton.com/?q=邻接矩阵" target="_blank" rel="noopener" title="都太简单了">邻接矩阵</a>),图的遍历(<a href="http://baidu.physton.com/?q=dfs" target="_blank" rel="noopener" title="简单">dfs</a>,<a href="http://baidu.physton.com/?q=bfs" target="_blank" rel="noopener" title="简单">bfs</a>)</p>
|
|
|
-<h3 id="引入">引入</h3>
|
|
|
-<p>我们举个例子吧: 有一个毒瘤水管工,他会造水管,有一天他造了一个水管网络,就像一个图。其中有一个点只有出边,就是起点,还有一个点只有入边,是终点。 点之间有一些管子,这些管子都有单位时间内的容量,现在毒瘤水管工想知道,他的管子在<strong>单位时间内</strong>在起点终点之间最多能流多少水。
|
|
|
+ <h3 id="前置知识"><a class="markdownIt-Anchor" href="#前置知识"></a> 前置知识</h3>
|
|
|
+<p>存图方式(<a href="http://baidu.physton.com/?q=%E9%82%BB%E6%8E%A5%E8%A1%A8" target="_blank" rel="noopener" title="简单">邻接表</a>,<a href="http://baidu.physton.com/?q=%E9%82%BB%E6%8E%A5%E7%9F%A9%E9%98%B5" target="_blank" rel="noopener" title="都太简单了">邻接矩阵</a>),图的遍历(<a href="http://baidu.physton.com/?q=dfs" target="_blank" rel="noopener" title="简单">dfs</a>,<a href="http://baidu.physton.com/?q=bfs" target="_blank" rel="noopener" title="简单">bfs</a>)</p>
|
|
|
+<h3 id="引入"><a class="markdownIt-Anchor" href="#引入"></a> 引入</h3>
|
|
|
+<p>我们举个例子吧:<br />
|
|
|
+有一个毒瘤水管工,他会造水管,有一天他造了一个水管网络,就像一个图。其中有一个点只有出边,就是起点,还有一个点只有入边,是终点。<br />
|
|
|
+点之间有一些管子,这些管子都有单位时间内的容量,现在毒瘤水管工想知道,他的管子在<strong>单位时间内</strong>在起点终点之间最多能流多少水。</p>
|
|
|
<!--noindex-->
|
|
|
<div class="post-button">
|
|
|
<a class="btn" href="/2020/03/02/dinic/#more" rel="contents">
|
|
@@ -502,7 +533,7 @@
|
|
|
<i class="fa fa-calendar-check-o"></i>
|
|
|
</span>
|
|
|
<span class="post-meta-item-text">Edited on</span>
|
|
|
- <time title="Modified: 2020-Mar-04 09:11:55" itemprop="dateModified" datetime="2020-03-04T09:11:55+08:00">2020-Mar-04</time>
|
|
|
+ <time title="Modified: 2020-Mar-04 10:46:53" itemprop="dateModified" datetime="2020-03-04T10:46:53+08:00">2020-Mar-04</time>
|
|
|
</span>
|
|
|
|
|
|
|
|
@@ -516,10 +547,12 @@
|
|
|
<div class="post-body" itemprop="articleBody">
|
|
|
|
|
|
|
|
|
- <h3 id="前置知识">前置知识</h3>
|
|
|
-<p>存图方式(<a href="http://baidu.physton.com/?q=邻接表" target="_blank" rel="noopener" title="简单">邻接表</a>,<a href="http://baidu.physton.com/?q=邻接矩阵" target="_blank" rel="noopener" title="都太简单了,没有一个打得过的">邻接矩阵</a>),<a href="https://schtonn.github.io/2020/03/01/union-find" target="_blank" rel="noopener">并查集</a>。 不会的快进入链接学习吧!</p>
|
|
|
-<h3 id="引入">引入</h3>
|
|
|
-<p>生成树,就是从一个图中选中<span class="math inline">\(n-1\)</span>条边,使得这些边构成一棵树,并包含图中的所有节点。 最小生成树,就是找到一种生成树,使得这个生成树的边权和最小。
|
|
|
+ <h3 id="前置知识"><a class="markdownIt-Anchor" href="#前置知识"></a> 前置知识</h3>
|
|
|
+<p>存图方式(<a href="http://baidu.physton.com/?q=%E9%82%BB%E6%8E%A5%E8%A1%A8" target="_blank" rel="noopener" title="简单">邻接表</a>,<a href="http://baidu.physton.com/?q=%E9%82%BB%E6%8E%A5%E7%9F%A9%E9%98%B5" target="_blank" rel="noopener" title="都太简单了,没有一个打得过的">邻接矩阵</a>),<a href="https://schtonn.github.io/2020/03/01/union-find" target="_blank" rel="noopener">并查集</a>。<br />
|
|
|
+不会的快进入链接学习吧!</p>
|
|
|
+<h3 id="引入"><a class="markdownIt-Anchor" href="#引入"></a> 引入</h3>
|
|
|
+<p>生成树,就是从一个图中选中<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n-1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span>条边,使得这些边构成一棵树,并包含图中的所有节点。<br />
|
|
|
+最小生成树,就是找到一种生成树,使得这个生成树的边权和最小。</p>
|
|
|
<!--noindex-->
|
|
|
<div class="post-button">
|
|
|
<a class="btn" href="/2020/03/01/min-span-tree/#more" rel="contents">
|
|
@@ -593,10 +626,10 @@
|
|
|
<div class="post-body" itemprop="articleBody">
|
|
|
|
|
|
|
|
|
- <h3 id="前置知识">前置知识</h3>
|
|
|
+ <h3 id="前置知识"><a class="markdownIt-Anchor" href="#前置知识"></a> 前置知识</h3>
|
|
|
<p>哈哈,简单到爆,没有。</p>
|
|
|
-<h3 id="引入">引入</h3>
|
|
|
-<p>并查集是一种快到爆炸的集合算法,可以进行两项基本操作:合并两个集合(并)、查询两个参数是否在一个集合内(查)。这也是它名字的由来。
|
|
|
+<h3 id="引入"><a class="markdownIt-Anchor" href="#引入"></a> 引入</h3>
|
|
|
+<p>并查集是一种快到爆炸的集合算法,可以进行两项基本操作:合并两个集合(并)、查询两个参数是否在一个集合内(查)。这也是它名字的由来。</p>
|
|
|
<!--noindex-->
|
|
|
<div class="post-button">
|
|
|
<a class="btn" href="/2020/03/01/union-find/#more" rel="contents">
|
|
@@ -670,10 +703,12 @@
|
|
|
<div class="post-body" itemprop="articleBody">
|
|
|
|
|
|
|
|
|
- <h3 id="前置知识">前置知识</h3>
|
|
|
-<p>必备:存图方式(<a href="http://baidu.physton.com/?q=邻接表" target="_blank" rel="noopener" title="简单">邻接表</a>,<a href="http://baidu.physton.com/?q=邻接矩阵" target="_blank" rel="noopener" title="都太简单了,没有一个打得过的">邻接矩阵</a>),<a href="http://baidu.physton.com/?q=dfs%E5%BA%8F" target="_blank" rel="noopener">dfs序</a>。 维护:<a href="http://baidu.physton.com/?q=%E7%BA%BF%E6%AE%B5%E6%A0%91" target="_blank" rel="noopener">线段树</a>、<a href="http://baidu.physton.com/?q=%E6%A0%91%E7%8A%B6%E6%95%B0%E7%BB%84" target="_blank" rel="noopener">树状数组</a>、<a href="http://baidu.physton.com/?q=BST" target="_blank" rel="noopener">BST</a>。 不会的快进入链接学习吧!</p>
|
|
|
-<h3 id="引入">引入</h3>
|
|
|
-<p>树链剖分,简单来说就是把树分割成链,然后维护每一条链。一般的维护算法有线段树,树状数组和BST。复杂度为<span class="math inline">\(O(log n)\)</span>。
|
|
|
+ <h3 id="前置知识"><a class="markdownIt-Anchor" href="#前置知识"></a> 前置知识</h3>
|
|
|
+<p>必备:存图方式(<a href="http://baidu.physton.com/?q=%E9%82%BB%E6%8E%A5%E8%A1%A8" target="_blank" rel="noopener" title="简单">邻接表</a>,<a href="http://baidu.physton.com/?q=%E9%82%BB%E6%8E%A5%E7%9F%A9%E9%98%B5" target="_blank" rel="noopener" title="都太简单了,没有一个打得过的">邻接矩阵</a>),<a href="http://baidu.physton.com/?q=dfs%E5%BA%8F" target="_blank" rel="noopener">dfs序</a>。<br />
|
|
|
+维护:<a href="http://baidu.physton.com/?q=%E7%BA%BF%E6%AE%B5%E6%A0%91" target="_blank" rel="noopener">线段树</a>、<a href="http://baidu.physton.com/?q=%E6%A0%91%E7%8A%B6%E6%95%B0%E7%BB%84" target="_blank" rel="noopener">树状数组</a>、<a href="http://baidu.physton.com/?q=BST" target="_blank" rel="noopener">BST</a>。<br />
|
|
|
+不会的快进入链接学习吧!</p>
|
|
|
+<h3 id="引入"><a class="markdownIt-Anchor" href="#引入"></a> 引入</h3>
|
|
|
+<p>树链剖分,简单来说就是把树分割成链,然后维护每一条链。一般的维护算法有线段树,树状数组和BST。复杂度为<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><mi>l</mi><mi>o</mi><mi>g</mi><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">O(log n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.02778em;">O</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.01968em;">l</span><span class="mord mathdefault">o</span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="mord mathdefault">n</span><span class="mclose">)</span></span></span></span>。</p>
|
|
|
<!--noindex-->
|
|
|
<div class="post-button">
|
|
|
<a class="btn" href="/2020/03/01/tree-link/#more" rel="contents">
|
|
@@ -747,7 +782,11 @@
|
|
|
<div class="post-body" itemprop="articleBody">
|
|
|
|
|
|
|
|
|
- <p><span class="math inline">\(\texttt{Is KaTeX working?-IT WORKED!NICE!}\)</span> <span class="math display">\[a^b\]</span> <span class="math display">\[\left(\dfrac{a}{b}\right)\]</span></p>
|
|
|
+ <p><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mtext mathvariant="monospace">Is</mtext><mtext> </mtext><mtext mathvariant="monospace">KaTeX</mtext><mtext> </mtext><mtext mathvariant="monospace">working?-IT</mtext><mtext> </mtext><mtext mathvariant="monospace">WORKED!NICE!</mtext></mrow><annotation encoding="application/x-tex">\texttt{Is KaTeX working?-IT WORKED!NICE!}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.22222em;"></span><span class="mord text"><span class="mord texttt">Is KaTeX working?-IT WORKED!NICE!</span></span></span></span></span></p>
|
|
|
+<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>a</mi><mi>b</mi></msup></mrow><annotation encoding="application/x-tex">a^b
|
|
|
+</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8991079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8991079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">b</span></span></span></span></span></span></span></span></span></span></span></span></p>
|
|
|
+<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo fence="true">(</mo><mfrac><mi>a</mi><mi>b</mi></mfrac><mo fence="true">)</mo></mrow><annotation encoding="application/x-tex">\left(\dfrac{a}{b}\right)
|
|
|
+</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.8359999999999999em;vertical-align:-0.686em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.10756em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">b</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span></span></span></span></span></p>
|
|
|
|
|
|
|
|
|
</div>
|